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Abstract
Background Running gait assessment has traditionally been performed using subjective observation or expensive laboratory-
based objective technologies, such as three-dimensional motion capture or force plates. However, recent developments 
in wearable devices allow for continuous monitoring and analysis of running mechanics in any environment. Objective 
measurement of running gait is an important (clinical) tool for injury assessment and provides measures that can be used to 
enhance performance.
Objectives We aimed to systematically review the available literature investigating how wearable technology is being used 
for running gait analysis in adults.
Methods A systematic search of the literature was conducted in the following scientific databases: PubMed, Scopus, Web of 
Science and SPORTDiscus. Information was extracted from each included article regarding the type of study, participants, 
protocol, wearable device(s), main outcomes/measures, analysis and key findings.
Results A total of 131 articles were reviewed: 56 investigated the validity of wearable technology, 22 examined the reliability 
and 77 focused on applied use. Most studies used inertial measurement units (n = 62) [i.e. a combination of accelerometers, 
gyroscopes and magnetometers in a single unit] or solely accelerometers (n = 40), with one using gyroscopes alone and 31 
using pressure sensors. On average, studies used one wearable device to examine running gait. Wearable locations were 
distributed among the shank, shoe and waist. The mean number of participants was 26 (± 27), with an average age of 28.3 
(± 7.0) years. Most studies took place indoors (n = 93), using a treadmill (n = 62), with the main aims seeking to identify 
running gait outcomes or investigate the effects of injury, fatigue, intrinsic factors (e.g. age, sex, morphology) or footwear on 
running gait outcomes. Generally, wearables were found to be valid and reliable tools for assessing running gait compared 
to reference standards.
Conclusions This comprehensive review highlighted that most studies that have examined running gait using wearable sensors 
have done so with young adult recreational runners, using one inertial measurement unit sensor, with participants running 
on a treadmill and reporting outcomes of ground contact time, stride length, stride frequency and tibial acceleration. Future 
studies are required to obtain consensus regarding terminology, protocols for testing validity and the reliability of devices 
and suitability of gait outcomes.
Clinical Trial Registration CRD42021235527.
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Key Points 

The majority of studies tested young adult recreational 
runners, with an average sample size of n < 30.

Most studies used one wearable (on shoe or tibia), 
typically an inertial measurement unit with a sampling 
rate of 100 Hz, with ground contact time, stride length, 
stride frequency and tibial acceleration outcomes most 
reported.

Most studies tested participants indoors, using a tread-
mill for a set duration or distance at a controlled speed.
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1 Introduction

Running is one of the most popular sport and recreational 
activities worldwide as well as being a core component 
of many sports [1]. In addition to its beneficial effects on 
health, the prevalence and cumulative incidence proportions 
of running-related injuries (RRI) are high, which results in 
participation cessation [2]. It is well established that a con-
tributing factor to RRI is abnormal running gait, meaning 
early detection of potentially harmful running gait patholo-
gies is essential. Where biomechanics have been implicated, 
clinical running analysis has largely been limited to the use 
of subjective clinical observation or rating scales (e.g. the 
High-Level Mobility and Assessment tool), which may not 
be sensitive to subtle changes in performance with training 
or injury [3–5].

Quantitative running gait analysis, as a clinical tool for 
minimising injury risk and as a performance measure, has 
been well documented in the literature [6–8]. However, 
quantification of running beyond clinical observation has 
largely been performed using a two-dimensional video 
analysis [3, 5] (particularly in commercial settings, such 
as running shoe stores), but this is limited to certain gait 
outcomes (i.e. foot strike patterns [FSP]) and still requires 
subjective visual/manual inspection and analysis of videos. 
To analyse more advanced measures, such as spatiotemporal 
(e.g. stride length [SL], stride time, step frequency [SF], 
speed), kinematic (e.g. angular velocity and joint angles) 
and kinetic (e.g. ground reaction forces [GRF]) measures, 
more cumbersome and expensive traditional (reference/
gold-standard) gait laboratory measures are required (e.g. 
three-dimensional [3D] motion capture, force plate equip-
ment, instrumented treadmills). However, use of gait labo-
ratories for running gait assessment is limited because of 
the expense of equipment, the need for trained practitioners 
to collect and analyse data, and the requirement to attend a 
laboratory setting. Therefore, those traditional techniques 
are not readily available to performance or clinical settings 
and provide a limited understanding of running in ‘real-
world’ environments [9–11]. Furthermore, laboratory-based 
testing often uses constrained protocols that may not rep-
resent usual running behaviour, such as assessing single 
foot strikes, unnatural force platform targeting and limited 
numbers of consecutive steps [12]. Numerous studies have 
sought to overcome this issue by using instrumented tread-
mills; however, further studies demonstrate the inconsist-
encies in running gait between over-ground and treadmill 
running [13]. In order to enhance understanding of running 
gait, further research in a natural running environment is 
required [12].

Wearable technology offers an alternative to over-
come traditional assessment limitations and is becoming 

increasingly accepted by runners, coaches and clinicians 
[14]. Wearables utilising accelerometers, gyroscopes and 
magnetometers, applied individually or in combination as 
an inertial measurement unit (IMU), and ‘pressure-sensitive’ 
insoles allow quantification of a combination of spatiotem-
poral, kinetic and kinematic variables and have become a 
viable alternative owing to their portability and affordability 
[15]. Evidently, wearable devices can quantify various run-
ning gait outcomes in any setting (i.e. laboratory or outdoor/
real world), which may enhance understanding of running 
performance, fatigue and injury mechanisms. Although 
research in this area is emerging, there have been some inter-
esting developments. For example, previous studies have 
only been able to assess discrete timepoints (‘snap-shots’) 
throughout a run because of the use of force platforms and 
video analysis [16–18], whereas with recent improvements 
in accuracy, sensitivity and computing power, wearables 
have the potential to be an effective tool to measure the 
effects of fatigue on running biomechanics in the field, cap-
turing the full duration of a run [19, 20].

Studies have also explored the use of wearable technol-
ogy to quantify running gait patterns [19–21]. Within those 
studies, a wide range of protocols have been used indicat-
ing a lack of standardised methodology, and it is unclear 
whether the various wearables are valid or reliable for run-
ning gait assessment, which limits running gait interpreta-
tion. Coaches, researchers, clinicians or athletes who want 
to conduct similar running gait assessments or research are 
left with a choice of numerous protocols, which differ in 
many aspects. In the process of developing robust proto-
cols, it is often helpful to have evidence-based recommen-
dations. Therefore, the purpose of this review is to provide 
a comprehensive overview of studies that have used wear-
able technology for a running gait analysis, in order to pro-
vide some guidance regarding the selection of appropriate 
methodologies. We focused the review on the following: (1) 
methodologies employed to assess the validity and reliability 
of wearables for running gait assessment; (2) the application 
of wearables to assess running gait (i.e. aims, participants, 
environment, sensor type/location, protocol); (3) commonly 
reported running gait outcomes and findings; and (4) rec-
ommendations for future protocols and research. For the 
purposes of this review, when reporting our findings, we 
first provide a comprehensive description of all reviewed 
studies and then group the reviewed articles into two areas: 
(A) those that purely examined the validity and reliability of 
wearables for running gait assessment and (B) application of 
wearable sensors to assess running gait in different popula-
tions to inform performance or clinical outcomes.
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2  Methods

The protocol was prospectively registered on the PROS-
PERO International Prospective Register for Systematic 
Reviews website (registration no. CRD42021235527) in 
February 2021. Design and reporting of this review have fol-
lowed the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) 2020 statement [22].

2.1  Search Strategy and Study Selection Process

A systematic search was conducted to identify potentially 
relevant papers in the following scientific databases: Pub-
Med, Scopus, Web of Science and SPORTDiscus. The focus 
of this review was on journal articles published in English 
that described the use of wearable technology to assess natu-
ral running gait in adults. The general search strategy and 
search terms are described in Table 1. Articles published 
up to 4 May, 2022 were reviewed. Thereafter, the article 
selection process consisted of the following steps using the 
PRISMA guidelines (Fig. 1): (1) an initial title screen for 
relevant articles was performed by independent authors (SS, 
RM), once the searched database results had been combined 
and duplicates had been removed; (2) both the titles and 
abstracts of the selected articles were reviewed (SS, RM) 
[a review of the full text was completed if it was not clear 
from the title or abstract whether the study met the review 
criteria]; and (3) the authors (SS, RM) read the full texts 
and selected articles based on the inclusion/exclusion cri-
teria (Table 2). Additionally, the references of all included 
studies were checked for additional publications that could 
be included in this review. At all stages of the study selec-
tion process, decisions regarding inclusion or exclusion were 
made by two authors (SS and RM), with a third author (GB) 
consulted to resolve discrepancies (Table 1 of the Electronic 
Supplementary Material [ESM]).

2.2  Data Extraction

Data were extracted by the author (RM) using a custom 
form to support standardised extraction (Appendix 1). Data 
were synthesised into a table format by the author (RM) 

and a second author (SS) confirmed data entry. Studies 
were divided into two categories based on the aims of this 
review: validity and reliability and application. Information 
extracted from each article included participants, sensor(s), 
study protocol, reference/additional measure, analysis, out-
come measures and key findings.

3  Results

3.1  Search Results

From the 7643 articles identified through the database 
search, 122 papers met the inclusion criteria. An additional 
nine articles were identified through a search of reference 
lists. The complete flow diagram of the screening procedure 
is shown in Fig. 1. A total of 131 articles were reviewed, 
with overlapping reports on several topics; specifically, 56 
examined validity, 22 examined reliability and 77 inves-
tigated the application of wearable technology for a run-
ning gait analysis (Fig. 2). Table 2 of the ESM provides key 
details about each article.

3.2  Participant Characteristics

Overall, studies included between three [19] and 187 [23] 
participants, with the average number of participants being 
26 (± 27). The mean age of participants was 28.3 (± 7.0) 
years. Two studies did not provide any age-related details 
[21, 24], with three studies providing age ranges only 
[25–27]. Three studies investigated running gait in par-
ticipants with an average age over 50 years, none of which 
performed a comparison of gait patterns across age groups 
that included older adults [28–30]. Most of the reviewed 
studies (n = 82) included both male and female partici-
pants, with eight examining differences between male 
and female participants [31–38] and three of these studies 
finding significant differences between sexes [32, 36, 37]. 
Thirty-nine studies had male participants only, while only 
three studies solely examined female participants [39–41], 
seven studies did not report the sex of participants [21, 
42–47] and two studies did not provide a breakdown of the 
sexes [26, 48]. The primary group of interest was healthy 

Table 1  Systematic search strategy key terms

* indicates a wildcard, that the search term can have any ending, TITLE-ABS-KEY indicates a title, abstract and keyword search

Wearable technology “Wearable*” OR "Wearable Technology" OR "Wearable Devices" OR "Wearable Sensors" OR “IMU” OR “Inertial Sen-
sor" OR "Inertial Measurement Unit" OR "Gyroscope" OR "Magnetometer" OR Acceleromet* OR "Force Plate" OR 
"Pressure Plate" OR "Pressure Sensor"

TITLE-ABS-KEY
Running gait “Running” OR “Jogging” OR “Run” OR “Jog” OR “Sprint” OR “Sprinting” OR “Sprints” OR “Runners” OR “Joggers” 

OR “Athletics” TITLE-ABS-KEY
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young adults who were recreationally active (Fig. 2), with 
only six studies investigating injured runners [39, 48–52] 
(Table 2 of the ESM). Twenty-four studies commented on 
the FSP of the participants: 18 of these investigated rear-
foot strikers [34, 43, 52–70], one study examined rear-foot 
strikers or neutral FSP [71], and five studies compared 
running gait parameters between FSPs [23, 40, 52, 68, 69].

3.3  Wearable Instrumentation

3.3.1  Inertial Measurement Units

Sixty-two articles stated that they used IMUs; however, 14 
of these studies only used the accelerometer capabilities 
within the IMU [23, 24, 38, 52, 56, 57, 62, 72–78] and 20 
studies stated they used the accelerometer and gyroscope 
components for the data analysis [26, 33, 43, 49, 50, 54, 59, 
61, 79–90]. The remaining 27 studies either did not com-
ment on components used [70, 91–98] or implied they used 

all accelerometer, gyroscope and magnetometer components 
for the data analysis [19–21, 28, 29, 36, 42, 99–109]. One 
study used an IMU and a separate one-dimensional accel-
erometer [61]. One study solely used the gyroscope housed 
within the IMU, using a sampling frequency of 102.4 Hz 
and not commenting on the gyroscope range [27]. Across 
these studies, the most common sampling frequency was 
100 Hz (n = 12) [19, 21, 28, 29, 38, 42, 73, 75, 76, 78, 82, 
94], but included use of 10 Hz [36] and 2000 Hz [43], and 
the range of the accelerometers was between ± 2.0 g [36] 
and ± 200 g [56, 57], with 16 g being the most frequently 
used (n = 14) [24, 26, 36, 59, 83, 85–89, 99, 100, 102, 103]. 
The gyroscope ranges (± °/s) used were 1200 (n = 7) [19, 20, 
59, 86–89], 2000 (n = 10) [21, 26, 42, 61, 83, 85, 92, 100, 
102, 103], 4000 [43] and a variety (n = 1) [36]. A variety of 
sampling frequencies (4–1000 Hz), accelerometer (2, 4, 6, 8, 
16 g) and gyroscope ranges (250, 500, 1000, 2000°/s) were 
used in one study that used an IMU [36]. Twenty-eight stud-
ies reported the weight and/or size of the IMU used, with a 

Records identified from:
Total (n = 7643)
Scopus (n = 3919)
Web of Science (n = 780)
PubMed (n = 1974)
SPORTDiscus (n = 970)

Records removed before 
screening:

Duplicate records 
removed (n = 3520)

Records identified from:
Citation searching (n = 16)

Records screened
(n = 4123)

Identification of studies via databases Identification of studies via other methods

Reports excluded (n = 173)*:
No use of wearable 
technology (n = 7)
<18 years (n = 6)
No access to paper (n = 2)
Not written in English (n = 1)
Case study or not a full-
length journal article (n = 19)
Protocol does not fit (n =31)
Not focused on running gait 
outcomes (n = 56)
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(n = 2)
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(n = 3826)

Reports not retrieved
(n = 2)

Reports not retrieved
(n = 0)

Reports sought for 
retrieval (n = 16)

Reports sought for 
retrieval (n =297)

Reports assessed for 
eligibility (n = 295)

Reports assessed for 
eligibility (n = 16)

Fig. 1  Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram. *An in-depth list of excluded arti-
cles and the reasons can be found in Table 1 of the ESM
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large range. IMUs were as small as 6.0 × 1.85 × 0.5 cm [83] 
up to 8.8 × 5.0 × 1.9 cm [38], and the weight of the IMUs 
ranged from 4 g [43] to 550 g [92] (Table 2 of the ESM).

3.3.2  Accelerometers Only

Of the 40 studies that stated they used single accelerom-
eter configurations in their methodology, notably, 13 stud-
ies did not comment on the dimensions [31, 41, 51, 58, 60, 
63, 64, 110–115], one-dimensional accelerometers were 
used exclusively in four studies [44, 48, 61, 116], one study 
featured a two-dimensional accelerometer [53], one study 

used both one-dimensional and 3D accelerometers [117], 
and 21 studies used 3D accelerometers only (Table 2 of the 
ESM). Where reported, sampling frequency was between 
30 Hz [117] and 1667 Hz [111], with 1000 Hz being the 
most common (n = 14) and the range of the accelerometers 
was between ± 0.05–2.0 g [117] and ± 50 g [118], with 16 g 
being the most frequently used (n = 8). There was a large 
range in reported sizes of accelerometers from as small as 
4.0 × 2.2 × 1.2 cm [119] up to 5.42 × 10.25 × 1.7 cm [120], 
weighing between 2.5 g [119] and 67 g [121] (Table 3 and 
Table 2 of the ESM).

Table 2  Eligibility criteria

GRF ground reaction force, IMU inertial measurement unit

Inclusion criteria
The articles contain a system for running gait analysis using wearable technology
Sensing modality used was a wearable accelerometer, gyroscope, magnetometer or a combination of those (IMU), or pressure insoles
Included at least one clearly defined running gait outcome measure, for example:
 Spatiotemporal (global outcomes of the running gait cycle): e.g. running velocity, acceleration of centre of mass, distance, ground contact time, 

step length, step frequency (cadence), stance time and flight time
 Kinematics (description of segmental or joint movement, generally in the three cardinal planes: sagittal, coronal [frontal], transverse planes, 

without consideration for forces): e.g. ankle dorsiflexion angle, ankle angular velocity or ankle angular acceleration
 Kinetic (the action of forces in producing or changing motion): e.g. GRF, peak pressure, centre of pressure, braking, impulse, time to peak pres-

sure, pressure time integral, loads, force time integral, contact area and peak tibial acceleration
Articles were written in the English language
Exclusion criteria
Book chapters, review papers, case studies (i.e. a study examining one individual), letters, short communications, technical notes, conference 

proceedings and other non-peer-reviewed literature
Studies evaluating the use of wearable technology for determination of step counts, distance, level of physical activity, classification or recogni-

tion of types of physical activity
Studies focusing on the estimation of physiological measures (e.g. metabolic equivalents), maximal oxygen consumption, examination of exter-

nal or neuromuscular load, stiffness, vibration and shock absorption of lower limbs
Studies aiming to determine running power, stability or economy
Studies investigating walking gait variability or regularity
Studies not evaluating straight running (e.g. change in direction tasks or cutting manoeuvres)
Studies investigating the use of biofeedback or gait retraining (i.e. non-natural running gait)
Studies involving use of altered weight conditions (e.g. wearable resistance, anti-gravity treadmills or water-based protocols)
Aims to evaluate only computer algorithms, machine learning or statistical approaches
Studies evaluating robotic systems, exoskeletons, prosthetics, virtual reality environments and simulated data or models
Study involves participants < 8 years of age
Study concerns non-human animal subjects

0 10 20 30 40 50 60

Not reported

Untrained

Elite/Sub-elite runners

Sport

Physically active

Experienced runners

Recreational runners

Number of Studies

(b) Participant Type

0 20 40 60 80

Reliability & Application

Validity & Application

Validity & Reliability

Application

Reliability

Validity

Number of Studies

(a) Type of Study 

Fig. 2  Summary of types of studies (a) and participant type (b) included in the review



246 R. Mason et al.

3.3.3  Pressure Sensors/Insoles

Of the 131 articles reviewed, 31 studies focused on pressure 
or force-sensitive insoles; two of those 31 studies investi-
gated the use of a combined pressure insole and an IMU 
[98, 122] and a further two studies utilised a pressure insole 
alongside accelerometers [53, 123]. Of the studies that used 
pressure insoles, the lowest sampling frequency was 50 Hz 
[39, 124, 125] and the highest was 1029 Hz [123]; 100 Hz 
was the most common sampling frequency (n = 13). Seven 
studies commented on the dimensions of the insoles/sensors 
[25, 53, 65, 66, 71, 122, 126], with the dimension range 
from 0.6 × 0.4 × 0.12 cm [65] to 2.55 cm [66] (Table 3 and 
Table 2 of the ESM).

3.3.4  Gyroscope Only

One study solely used a gyroscope (not encompassed in an 
IMU), with a sampling frequency of 1500 Hz and a gyro-
scope range of 250°/s [127] (Table 3 and Table 2 of the 
ESM).

3.4  Number of Sensors

In the reviewed studies that used IMUs, accelerometers or 
gyroscopes, most studies used one (n = 56) or two (n = 30) 
sensors. Few studies used more than two sensors, for exam-
ple, others used three [77, 97], four [62, 74, 117], five [106], 
seven [103, 109], eight [19, 20, 85], nine [105], 12 [21] or 
17 sensors [108]. Where studies used more than one sen-
sor, they were not necessarily the same type of sensor (e.g. 
one IMU and one accelerometer). For example, two studies 
sought to compare multiple and single sensor units [93, 130]. 
Notably, of the studies that used multiple sensors, six sought 

to investigate the influence of sensor location on outcome 
measures [74, 85, 93, 101, 128, 130] (Table 2 of the ESM).

3.5  Location

The most common inertial wearable locations were the tibia 
(n = 42), mostly located at the distal anteromedial aspect; 
shoe (n = 38), varying locations of dorsal aspect/shoelaces/
instep, cavity, ankle, heel and fifth metatarsal; and lower 
back [including sacrum] (n = 24). One study used instru-
mented earbuds [135], and a further four studies placed 
wearables on the sternum/chest and these were always in 
combination with a lower body sensor placement [19, 20, 
89, 93]. In the seven studies that used wearables on the upper 
back, five studies placed the sensor in a harness/vest [21, 38, 
105, 121, 129, 130, 133]. Two studies located accelerom-
eters on the wrist, housed in GPS watches [21, 31] and one 
study mounted 17 sensors onto a lycra suit that participants 
wore [108] (Fig. 3 and Table 2 of the ESM).

3.6  Extracted Features/Outcome Measures

Table 4 provides a full breakdown of reported outcome 
measures. Outcomes included spatiotemporal, kinematic 
and kinetic running gait parameters. Among the studies 
that investigated spatiotemporal parameters, measures of 
distance included SL (n = 29) and less commonly, verti-
cal oscillation (n = 7), while ground contact time (GCT)/
stance time (n = 49), SF (n = 36), and stride or step time 
(n = 16) were the most frequently reported temporal meas-
ures. Measures of acceleration included peak or average 
acceleration of a particular body segment, most commonly 
the tibia (n = 28). Where pressure insoles were used, plan-
tar pressure (n = 17), contact area (n = 12) and pressure 
or force–time integral (n = 10) were the most reported 
outcomes.

Table 3  Type of sensor used within reviewed studies

Note: Table refers to how each study classified the technology used, rather than the components used for analysis (i.e. some studies used an IMU, 
but only analysed data from one element of the unit)
IMU inertial measurement unit

Type of wearable technology used n References

IMU (a combination of sensors in one unit; accelerom-
eter, gyroscope, magnetometer)

61 [19–21, 23, 24, 26–29, 33, 36, 38, 42, 43, 49, 50, 52, 54, 56, 57, 59, 
62, 70, 72–97, 99–109, 128]

Accelerometer only 37 [30–32, 34, 35, 41, 44, 46, 48, 51, 58, 60, 63, 64, 110–121, 129–139]
Pressure sensor/insole 27 [25, 37, 39, 40, 45, 47, 55, 65–69, 71, 124, 125, 140–151]
Pressure sensor and accelerometer 2 [53, 123]
Pressure sensor and IMU 2 [98, 122]
IMU and separate accelerometer 1 [61]
Gyroscope 1 [127]
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3.7  Protocol

3.7.1  Environment

Figure 4 provides an overview of the environments used 
for running assessments. Most studies (n = 93) used indoor 
facilities only that primarily involved treadmill running 
(n = 62). Thirty-two of the reviewed studies investigated 
running gait in outdoor environments only, and six studies 
used a combination of both indoor and outdoor testing [21, 
53, 55, 60, 91, 143]. Eighteen studies examined running gait 
over more than one surface [21, 36, 46, 53–55, 60, 66, 67, 
80, 87, 91, 105, 118, 125, 131, 143, 151]. The most popular 
outdoor surface was a running track (n = 16), followed by 
concrete (n = 13). Five studies did not report the outdoor 
surface type where testing took place [28, 33, 50, 59, 89] 
(Fig. 4 and Table 2 of the ESM).

3.7.2  Running Gait Protocol

3.7.2.1 Duration/Distance The duration or distance of the ana-
lysed running protocol varied greatly by study. One hundred 
and nine studies analysed running gait in a single day, while 22 
studies tested running gait over 2 or more days (Table 2 of the 
ESM). Protocols were heterogeneous and consisted of:

• Analysing a certain number of steps, strides or gait 
cycles (n = 50). For example, four stages of 100 strides 
[20], three different footwear types, and five trials each, 
analysing one right foot strike per trial [115].

• Analysing running gait for less or equal to 60 s (n = 42). 
For example, one 15-s run [56, 74], and 30 trials lasting 
30 s (five trials, six conditions, last 30 s of 3-min trials) 
[71].

• Analysing running gait in trials lasting over 1 min and 
less than 5 min (n = 17) [32, 36, 49, 72, 75, 80, 83, 92, 
97, 98, 101, 120, 123, 128, 134]. For example, three 
sessions each consisting of three 5-min runs at varying 
speeds [75], seven 100-m runs (outdoor) and seven 60-s 
runs (treadmill) [91], or 3 min [36].

• Analysing gait patterns over longer distances that were 
more representative of a typical run [i.e. more than 
5  min] (n = 22). For example, dissecting a 100-km 
(ultra-marathon) into ten 10-km segments to investigate 
the effects of fatigue [31], or analysing one 10-km seg-
ment and 15 2-km segments of a marathon race [29]. 
One study examined various distances; however, different 
participants were used for each distance [80].

3.7.2.2 Speed/Pace There was variation in speed 
amongst the reviewed studies. Seventy-seven studies used 
controlled speeds (58 of these controlled at a set pace), 
with a range from 2 m/s [85, 121] to 26 km/h [117]. Nine 
studies controlled speed based on individual performance; 
four of these studies used personal bests as the benchmark 
[42, 48, 87, 108] and two studies controlled speed based 
on the participants’ preferred speed (e.g. 85 and 115% pre-
ferred speed) [21, 98]. The remaining three studies used 
physiological measures to determine speed used [19, 70, 

Fig. 3  Frequency distribution 
of the body segments on which 
wearables were placed
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111], for example, one study controlled running speed at 
2 mmol/L blood lactate [70] (Table 2 of the ESM).

Fifty-five studies examined running gait at self-
selected speeds; amongst these studies there were large 
variations in instructing speed. For example, six studies 
used race scenarios [20, 29, 31, 59, 82, 89], 14 studies 
asked participants to run based on perception (e.g. ‘easy 
run’/‘comfortable’, 75% maximum effort) [33, 44, 49, 54, 
79, 99, 101, 105, 125, 128, 136, 141, 147, 148], and a fur-
ther 11 studies instructed participants to run at maximum 
effort/speed [74, 86, 88, 90, 99, 100, 104, 105, 129, 132, 
133].

Eight studies combined controlled and self-selected 
speeds [35, 62, 76, 116, 118, 127, 132, 135]. For example, 
Giandolini et al. examined participants at 10, 12, 14 (female) 
and 16 km/h (male), maximum aerobic speed and partici-
pant’s preferred speed [116]. Where speeds were reported, 
46 studies included two or more speeds in their protocol.

3.7.2.3 Gradient Sixteen studies commented on the run-
ning gradient [28, 34–36, 76, 80, 90, 101, 108, 109, 125, 
128, 131, 144, 147, 149]. The majority of studies (n = 5) 
used a 0% gradient [34, 101, 109, 128, 144] or a 1% gradi-
ent (n = 4) on the treadmill [35, 36, 76, 125]. Three studies 
analysed the effects of different gradients [28, 80, 90], and 

one study investigated the effects of low and high altitudes 
on running gait [82].

3.7.2.4 Footwear Forty-three studies required partici-
pants to wear standardised shod running shoes, of whom 
42 utilised the participant’s own running shoes. Two studies 
tested participants in standardised footwear and in their own 
footwear [109, 116]. One study tested participants in socks 
as participants wore the insoles seeking validation wear-
ing tight-fitted socks without shoes to allow a more direct 
measurement comparison [150]. Lucas-Cuevas et  al. used 
standardised shoes and participants’ own insoles inside the 
participants’ own running shoes [119]. Forty-six studies did 
not comment on the footwear used (Table 2 of the ESM).

3.8  Validity and Reliability Studies

Fifty-six studies focussed on the validation of wearables 
for running gait assessments, with 18 also examining the 
reliability of devices [47, 98, 99, 103, 104, 110, 117, 120, 
130, 134, 136, 140, 144, 149]. Eleven studies investigated 
between-day reliability [34, 47, 98, 106, 117, 120, 122, 140, 
142, 144, 149], and three studies solely examined the reli-
ability of wearable technology [87, 134, 138] (Table 2 of 
the ESM).

0 20 40 60 80 100

Combined

Outdoor Only

Indoor Only

Number of studies

(a) Environment

0 20 40 60 80 100

Not reported

Combination

Synthetic Grass

Track

Overground

Treadmill

Indoor Only

Indoor

Number of studies

(b) Indoor Environment

0 20 40 60 80 100

Not reported
Combination

Mountain
Woodchip

Trail
Asphalt

Grass
Concrete

Track
Outdoor Only

Outdoor

Number of studies

(C) Outdoor Environment

Fig. 4  Summary of environments that studies were conducted within (a) overall, (b) indoor environments and (c) outdoor environments
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3.8.1  Protocols for Validity and Reliability

3.8.1.1 Participants Protocols to assess validity and reli-
ability varied greatly. Overall, studies included between five 
[27] and 100 [95, 96] participants, with the average num-
ber of participants being 22 (± 18). The mean age of par-
ticipants was 26.8 (± 4.5) years. Two studies only provided 
age ranges [26, 27] and one study did not report age [24]. 
Sixteen studies used male-only participants [61, 73, 84, 92, 
94, 97, 98, 110, 115, 117, 121, 127, 129, 130, 133, 138], 
two did not report or provide the breakdown of sex [26, 45], 
and the remaining studies included both male and female 
participants. All studies included healthy participants and 
four studies commented on the FSP of the participants [34, 
61–63].

3.8.1.2 Environmental Control Six validity and/or reliabil-
ity studies used outdoor environments, with participants run-
ning on concrete [79, 87], artificial turf [105] and track [102, 
105, 120, 152]. Of the remaining studies that used indoor 
environments, 31 ran on treadmills, 15 ran over-ground [45, 
63, 78, 85, 94, 104, 110, 115, 121, 124, 127, 130, 141, 142, 
150] and six ran on a track [61, 99, 100, 129, 133, 136]. No 
studies used both indoor and outdoor testing or examined 
running gait over more than one surface. Seven studies com-
mented on the treadmill gradient, one study set the treadmill 
at a 0, 10 incline and 10% decline [149], two studies used 
a 1% treadmill gradient [75, 76] and the remaining study 
stated that no gradient was used (i.e. 0%) [34, 101, 128, 144] 
(Table 2 of the ESM).

3.8.1.3 Distance/Time Control Twenty-three studies 
focused on analysing a certain number of steps, strides or 
gait cycles, with the minimum being six foot strikes in total 
(three trials, two speeds) [127], and a maximum of 200 con-
secutive left and right steps of a 5-min run [140]. Thirty-
three studies investigated running gait over particular dis-
tances or times whereby 23 studies analysed running gait 
for ≤ 60 s. Ten studies analysed running gait in trials last-
ing > 1 and < 5 min [36, 75, 92, 97, 98, 101, 106, 120, 123, 
128]. One study examined gait patterns over a long distance, 
i.e. up to 4 km [79], and another study did not comment on 
the number of steps or distance analysed [94]. Within reli-
ability studies, ten analysed test-re-test reliability in a single 
day (i.e. two sessions in 1 day) [98, 99, 103, 104, 106, 110, 
130, 134–136] and 11 studies performed a test-re-test analy-
sis on different days [34, 47, 87, 117, 120, 122, 138, 140, 
142, 144, 149]. Those studies that assessed running gait on 
different days separated testing by a minimum of 24 h [34, 
140, 144], and repeated testing within 1 week [120, 149], 
2  weeks [47, 87] or 1  month [117, 142], with one study 
repeating testing at 1 week and 6 months [138] (Table 2 of 
the ESM).

3.8.1.4 Speed Control Thirty-one studies used controlled 
speeds, with the slowest speed set at 7 km/h [84] and the 
fastest speed set at 26  km/h [117]. Self-selected speeds 
were used in 21 studies, with a range from jogging [136] 
to maximum effort/sprint [86, 99, 100, 102, 104, 105, 129, 
133]. An additional five studies combined controlled and 
self-selected speeds [62, 76, 116, 127, 135]. One study did 
not comment on the treadmill speeds used [93]. Twenty-
seven studies included more than one speed in their pro-
tocol; consequently 32 studies examined the effect of run-
ning speed on the validity and/or reliability of outcomes 
obtained (Table 2 of the ESM).

3.8.1.5 Footwear Control Most studies did not comment 
on the footwear used. Thirteen studies standardised the 
footwear of participants [45, 61, 62, 83, 85, 115, 116, 123, 
124, 138, 142, 144, 149], 17 allowed participants to wear 
their own running shoes [27, 34, 79, 81, 87, 98, 99, 101, 
103, 105, 106, 120, 128, 140, 141] and one study required 
participants to run unshod while wearing insoles under 
socks [150].

3.8.2  Validation Reference Measures

Twenty-four studies used a laboratory reference of 3D 
motion capture, 14 used a two-dimensional video analysis 
[26, 99–101, 105, 110, 116, 123, 128, 129, 133, 136, 142, 
144], 17 used force plates [45, 63, 75, 76, 98, 104, 115, 
121, 122, 124, 127, 130, 133, 136, 141, 142, 150], 17 used 
instrumented treadmills [38, 62, 81, 84, 93, 95–97, 103, 106, 
123, 135, 140, 144, 149], one study compared measures to 
an accelerometery system implemented in the treadmill [34], 
12 used timing gates/light barriers [61, 63, 86, 99, 100, 102, 
104, 105, 110, 115, 127, 129], five compared to other wear-
able technology [45, 79, 97, 120, 130] and one study used a 
practitioner observed step count [117] (Table 2 of the ESM).

3.8.3  Validity and Reliability Findings

3.8.3.1 Foot/Shoe Mounted Devices Most validity studies 
(n = 22) assessed shoe-mounted or foot-mounted devices. 
Reviewed studies showed that wearables could accurately 
measure stride time [85], speed, oscillation and GCT meas-
ures [79, 86, 134], step rate [93], FSP data [26, 81, 84, 116] 
and SL [100] using shoe or foot mounted wearable tech-
nology. Conflicting findings regarding the validity of joint 
kinematics using shoe-mounted accelerometers were dem-
onstrated [73, 83, 94].

3.8.3.2 Tibia‑Mounted Devices Fifteen studies showed that 
tibial-mounted devices are valid for the detection of gait 
events [63, 127], step length [34], stride/step time [27, 34, 
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106], SF [34, 93, 106], tibial acceleration [34, 115] and ver-
tical GRF [136]. However, stance and swing times collected 
using a gyroscope yielded poor-to-moderate agreement with 
optical motion capture [27]. One study did not consider the 
validity; however, it demonstrated that an accelerometer had 
good-to-moderate reliability for peak tibial acceleration at 
1 week and 6 months [138].

3.8.3.3 Lower Back and  Waist Mounted Devices Fifteen 
articles reported that wearables on the pelvis, waist or lower 
back are accurate for identifying stride, step, stance dura-
tion [106], centre of mass vertical acceleration [75, 76], gait 
events [78], running speed, SL, SF [102, 106] and kinetic 
measures [104]. Outcomes such as GCT, flight time and 
peak vertical GRF have conflicting evidence regarding 
accuracy and reliability [24, 95, 96, 110, 120].

3.8.3.4 Upper Back Mounted Devices Six studies reported 
that wearables located on the upper back [38, 105, 121, 129, 
130, 133] had poor validity for examining gait symmetry 
[133], predicting GRF [121, 130], measuring velocity [129] 
and peak or average accelerations [38, 130], as well as poor 
reliability [130].

3.8.3.5 Multiple Device and  Other Locations Ten studies 
used more than one wearable in various locations and dem-
onstrated good validity and reliability regarding spatiotem-
poral [106, 117] and kinematic and kinetic measures [61, 62, 
94, 97, 103, 122, 138]. However, the validity varied between 
outcome measures (i.e. good accuracy for knee kinematics 
but poor for ankle kinematics) [93, 103, 105]. Furthermore, 
the measurement of SF and GCT using an accelerometer 
embedded in a wireless earbud showed good test–retest reli-
ability, face validity and concurrent validity [135].

3.8.3.6 Pressure Insole Devices Eleven studies reported on 
pressure insoles, with most studies attempting to correlate 
plantar pressures with GRF [45, 98, 122–124, 140–142, 144, 
149, 150]. Findings suggest that insoles are generally valid 
and reliable for measuring temporal measures [98, 150] and 

kinetics, such as peak weight acceptance force, impulse and 
loading rate [124, 140, 142, 150]. However, other studies 
suggest that the validity of the device is dependent upon the 
force outcome measure [123, 149, 150]. Overall, the validity 
and reliability of pressure insoles appears to be system [128, 
149], location [85, 101] and speed dependent [27, 99, 102, 
127] (Table 2 of the ESM).

3.9  Application Studies

The aims of the applied use of wearable technology for 
running gait analysis fell into broad categories of footwear, 
clothing (e.g. compression socks, insoles), surface (as men-
tioned in Sect. 3.7.1), intrinsic factors (e.g. sex, FSP), per-
formance (e.g. experience, speed), fatigue, detecting gait 
parameters (e.g. relationships between gait parameters) and 
running injuries (Table 5).

3.9.1  Footwear and Clothing

Eighteen studies investigated the effects of footwear on 
running gait parameters (Table 5). The majority of studies 
(n = 17) investigated different types of footwear on spati-
otemporal, kinematics and kinetics, and generally the studies 
were consistent in evidencing that footwear construction has 
a substantial influence on some running gait outcome meas-
ures obtained by wearable technology, for example, signifi-
cant differences in tibial acceleration [44, 64, 113, 114], SL 
[70] and loading parameters [37, 43, 45, 62, 65, 71, 148]. 
In contrast, other authors found no significant differences 
between shoe conditions [61, 112, 146]. In terms of cloth-
ing, Stickford et al. used wearable technology to examine 
whether wearing graduated lower-leg compression sleeves 
during exercise evokes changes in running biomechanics and 
Lucas-Cuevas et al. analysed the acute differences in stride 
parameters while running on a treadmill with custom-made 
and prefabricated insoles [119, 139].

Table 5  Summary of 
application of wearable 
technology

Application n References

Footwear and clothing 20 [37, 41, 43–45, 58, 61, 62, 64, 65, 70, 71, 109, 112–114, 119, 
139, 146, 148]

Surface 16 [21, 35, 46, 53–55, 60, 66, 67, 87, 91, 118, 125, 131, 143, 151]
Intrinsic factors 15 [21, 23, 29, 31, 32, 36, 37, 40, 44, 52, 65, 68, 69, 80, 145]
Performance 17 [30–33, 35, 42, 47, 54, 62, 77, 82, 87, 90, 108, 118, 132, 137]
Fatigue 13 [19–21, 29, 31, 42, 59, 72, 88, 89, 111, 132, 143]
Detecting gait parameters 12 [23, 25, 28, 56, 57, 61, 62, 74, 90, 107, 116, 147]
Running injuries 6 [39, 48–52]
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3.9.2  Intrinsic Factors

Results of the 15 studies that investigated characteristics of 
sub-groups or intrinsic factors relating to performance sug-
gested that running patterns were likely individual and task 
specific (Table 5) [29, 32, 80]. Of all the reviewed studies, 
five examined differences between male and female indi-
viduals [31, 32, 36–38], and three of these studies evidenced 
significant differences between sexes [32, 36, 37]. There 
were conflicting findings from the six studies that investi-
gated the effects of FSP on running biomechanics [23, 40, 
52, 65, 68, 69]. Key findings argue that no significant differ-
ences existed for total maximum force, force–time integral, 
peak pressure and pressure–time integral, but the total con-
tact area of rear foot strikers was higher than that of non-rear 
foot strikers [68, 69]. In contrast, other studies demonstrated 
significant effects of the FSP on tibial acceleration, load 
rates and plantar pressure at varying plantar regions [23, 40, 
52, 65]. Two studies examined morphological differences of 
the foot and the influence on running gait [44, 145]. Only 
one study examined the effects of age and anthropometric 
measures on running gait [31].

3.9.3  Performance

Of the applied studies that focused on performance aspects, 
12 examined the influence of speed on running biomechan-
ics [30, 31, 35, 42, 47, 54, 62, 77, 87, 118, 132, 137], four 
investigated the experience of participants [30, 32, 42, 118], 
one study examined the effects of altitude [82] and another 
study investigated gradient [90]. Associations of gait metrics 
with wellness and session perceived exertion was prospec-
tively examined in one study [33] and specifically running 
kinematics in triathletes was investigated in another study 
[108].

3.9.4  Fatigue

Thirteen studies examined the effects of fatigue on run-
ning gait (Table 5). The findings are conflicting regard-
ing if changes in running gait are fatigue induced and if 
this is dependent on experience level. Some suggest that 
GCT, flight time, trunk anterior–posterior acceleration, 
peak impact acceleration swing time, swing velocity and 
foot strike angles show significant changes with fatigue 
[42, 59, 89]. In contrast, others indicate no changes in 
spatiotemporal or FSP throughout the run [42, 88, 132]. 
Burns et al. suggested that SF changes only with speed 
and not fatigue [31]. Studies suggest that fatigue-induced 
changes do occur but may be subject specific [19–21, 111, 
143] and dependent on experience/skill level [21, 29, 72] 
or fatigue state [89].

3.9.5  Detecting Gait Parameters

Twelve studies sought to investigate methods that detect or 
influence running gait outcome measures (Table 5). Stud-
ies sought to identify trends [25, 28], examine relation-
ships between running gait parameters [23, 56, 74, 90, 
116, 147] or investigate the effects of different methodolo-
gies on the outcome measures obtained [57, 61, 62, 107].

3.9.6  Running Injuries

Applied articles focusing on running related injuries 
(n = 6) sought to evaluate the effects of ankle taping, brac-
ing and fibular reposition taping on running biomechan-
ics [49], and to examine [52] and compare running gait 
parameters of injured and non-injured runners [39, 48, 50, 
51]. Table 6 provides a summary of the most reported 
protocol features in the reviewed studies.

3.10  Usability

Only two studies sought to examine the usability, comfort 
or wearer’s perceptions of the device; both studies reported 
the wearables to be comfortable to wear and wearers did 
not feel affected in their movements [21, 125].

4  Discussion

This review examined 131 studies that examined the use of 
wearable technology for running gait analysis. Explicitly, 
this review reported on: (1) methodologies employed to 
assess validity and reliability of wearables for running gait 

Table 6  Summary of commonly reported details in reviewed studies

Protocol feature Most reported

Participants Young adults [average age of 28.3 (± 7.0) 
years]

Sample size Average of 26 (± 27)
Experience Recreational runner
Environment Indoor on a treadmill
Run duration/distance Set distance or duration
Speed/pace Controlled speed
Gradient 0–1%
Footwear Standardised shoes
Type of wearable Inertial measurement unit at 100 Hz
Outcome measures Ground contact time, stride or step length, 

stride or step frequency and tibial accel-
eration

Sensor location Fixed to the tibia or shoe
Number of wearables One
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assessment; (2) application of wearables to assess running 
gait; and (3) commonly reported running gait outcomes 
and findings. This review has demonstrated that the use of 
wearable technology for running gait assessment is emerg-
ing, but further work is required to establish a standardised 
methodology and the validity or reliability of instrumen-
tation. We have provided a comprehensive overview of 
wearable technology used for a running gait assessment, 
and here we provide recommendations for future work.

4.1  Wearable Instrumentation

Wearable accelerometers, gyroscopes, IMUs (combined 
accelerometer, gyroscope and magnetometer) and pressure 
insoles were used within the reviewed studies to examine 
running gait. There was generally a lack of consistency 
across the reviewed studies for several factors that may 
impact the accuracy of wearable technology used for a 
running gait assessment, which included the data acquisi-
tion rate, data analysis methods, and location and number 
of wearables. Our findings show that IMUs are the most 
used wearables for running gait assessments (closely fol-
lowed by pressure insoles), but most studies have focused 
on analysing acceleration data only rather than gyroscope 
and/or magnetometer data [11, 153]. However, evidence 
suggests that the use of all sensor data within a single 
IMU can improve the accuracy of movement quantifica-
tion, particularly orientation [15, 27, 154–156]. Addition-
ally, IMU accuracy for running gait assessments may have 
been impacted by the huge variation in sampling frequency 
and operating range between devices (4–1667 Hz, 2–70 g). 
For example, Mitschke et al. have shown that sampling fre-
quency and operating range can influence the accuracy of 
outcome measures from IMUs, particularly when they are 
too low (e.g. < 100 Hz) to detect movement events [61]. 
Generally, wearables were deployed within the lower limb, 
with the tibia as the most common site (IMUs and pres-
sure insoles) and most studies used one or two wearables, 
which may be because of the cost–benefit approach to the 
device set-up. For example, using multiple wearable tech-
nology inevitably costs more but there is a benefit of using 
multiple devices (that may be combined IMU and pressure 
insole systems), as more data acquisition allows for an 
increased accuracy of outcomes (e.g. gait events and spa-
tiotemporal parameters) [157]. Most studies utilised only 
one wearable (IMU, accelerometer or gyroscope) to collect 
biomechanical data. However, it is important to consider 
the practicality and comfort of numerous wearables during 
natural running. Further research exploring the feasibility 
and necessity of utilising multiple wearables is required, 
or whether this can be condensed into one sensor, as this 
will enhance understanding of the optimal number and 

placement of wearables to deliver the most pertinent data 
while enabling a natural running gait.

A major issue in the approach to wearable instrument 
application is that only two studies examined the usability 
of the devices through engagement with end users. Wearable 
technology design and set-up can influence cost, usability 
and accuracy of the instruments, which may vary depend-
ing on the interests of different end users. Studies often lack 
considerations for the wearer’s physical, psychological and 
social preferences regarding the technology [158].

4.2  Outcome Measures

This review has highlighted that there is a need for a com-
prehensive assessment and reporting of running gait out-
comes, which may require combined ‘multi-modal’ (e.g. 
combination of IMU and pressure insoles, or accelerometer 
and pressure insole) wearables to examine running gait. The 
reviewed studies primarily limited their assessments to only 
the examination of selective spatiotemporal or kinematic 
outcomes; specifically SF, SL, tibial acceleration and GCT 
were the most common outcomes reported. Despite numer-
ous studies establishing that running biomechanics cannot 
be described based on a single parameter [159–162], most 
studies focused on singular (or a select few) running gait 
outcomes, for example, GCT [99], SF [31, 117] or tibial 
acceleration [56, 118, 138]. Examination of selective param-
eters may explain in part the inconsistencies across study 
findings regarding the relationship between running bio-
mechanics, performance and injury [161, 163–166]. Fur-
thermore, comprehensive reporting and consistency in the 
literature is hindered by the lack of consistent terminology 
for running gait outcomes, for example, vertical oscillation 
of COM and stance duration have no relation to RRI [14, 
163]. The lack of consensus is further impacted by the fact 
that there are no ‘gold-standard’ algorithms for the detec-
tion of running gait outcomes from wearable sensor set-ups, 
which likely explains the large volume of outcomes reported 
in the reviewed studies. In order to derive appropriate algo-
rithms and report findings in a consistent manner, examina-
tion of multiple running gait outcomes (i.e. spatiotemporal, 
kinematic, kinetic) may require a combination of IMUs and 
pressure sensors, which allows for a comprehensive assess-
ment and may improve outcome accuracy (e.g. vertical GRF 
is most accurate with the use of pressure sensors or multiple 
IMUs) [97], but the volume of outcomes may create other 
methodological issues when examining a finite number of 
individuals. Despite these limitations, it is pertinent to con-
sider whether such idealist methodologies are clinically and 
practically feasible within a given context.

Outcomes obtained from small cohorts may not accu-
rately represent the population being studied and may lead to 



255Wearables for Running Gait Analysis

poor statistical power or inconsistency across study findings. 
This was evidenced within the reviewed studies, as studies 
primarily investigated running gait in small sample sizes 
(i.e. n < 30) of young adults, which limits the generalisability 
of results. For example, Burns et al. demonstrated that the 
variability of an elite runner’s SF is linked to both speed 
and fatigue but not to any other characteristics of the run-
ner [31]. In contrast, Reenalda et al. demonstrated that that 
changes in SF are dependent upon the individual; however, 
the authors were unable to perform an analysis at a group 
level because of their limited sample size (n = 3), thus stating 
that the observed effects of fatigue on running mechanics 
are confined to the runners analysed only and may not be 
representative for other runners [20]. The small sample sizes 
of the reviewed studies are surprising considering there is 
evidence from walking studies that gait analyses in a natural 
environment can be conducted on larger scales owing to the 
advancements in wearable technology [153, 167, 168]. The 
inclusion of larger sample sizes would facilitate the identi-
fication of subgroups of running patterns and the generalis-
ability of the findings into the populations being studied. 
With the portability and ease of use of wearable technology, 
future studies should consider monitoring the running gait 
patterns of larger samples as it will allow for prospective 
studies and subgroups to be identified. Furthermore, only 
three studies examined running gait with an average age of 
over 50 years. However, none of the studies that examined 
older adults compared outcome measures to younger adults. 
Burns et al. noted that SF was not related to age; however, 
their sample only consisted of 20 participants, with an age 
range of 26–56 years (average age 38.1 ± 6.4 years) [31].

4.3  Test Protocols

Differences among study protocols in running gait testing 
conditions, and the definition of outcome measures, limited 
the ability to directly compare outcomes across studies. None-
theless these protocol differences highlight the versatility of 
wearables, proving they can provide data on realistic and 
spontaneous running scenarios. Treadmill running was the 
most common means to evaluate and quantify running gait. 
Use of a treadmill has the advantage of providing a standard-
ised and reproducible environment where speed can be easily 
controlled and the required calibration volume for the optical 
system is considerably reduced. However, running speed is 
directly related to cardiovascular factors [169] and biome-
chanical factors [36, 170], and therefore imposing a set speed 
through a treadmill, rather than allowing runners to select the 
speed at which they are comfortable running, may produce 
alterations in running gait. Indeed, Zamparo et al. and Lus-
siana and Gindre indicated that self-selected speed related to 
individual energy-saving strategies [170, 171], and Kong et al. 
suggested that self-selected speeds may eliminate abnormal 

kinematic patterns [172]. Similarly, despite the known impact 
of the gradient on running gait, there were very few reviewed 
studies that examined this [173–175], but some studies did set 
the treadmill to 1% to compensate for the known differences 
between treadmill and over-ground running [176]. However, 
recent research has suggested that there may be more to con-
sider than just the gradient when attempting to replicate over-
ground running on the treadmill [177–179].

Protocols need to carefully consider where running is 
examined with wearables. Treadmill running may not truly 
reflect natural running behaviour, as Montgomery et al. dem-
onstrated that non-motorised treadmills generate large reduc-
tions in peak tibial acceleration, large to very large increases 
in SF during running when compared to over-ground and 
motorised treadmills conditions [46]. Therefore, studies have 
moved beyond the laboratory to more natural running envi-
ronments (i.e. indoor or outdoor running tracks, or sports 
venues), which has largely involved the examination of 
differences in running gait between different types of run-
ning surfaces [55, 67, 118, 180]. For example, when Hong 
et al. compared plantar loads when running on a treadmill, 
concrete and natural grass, it was shown that running on a 
treadmill induced lower peak plantar pressure and longer 
contact time for the total foot and two toe regions [55]. Addi-
tionally, several other reviewed studies suggest that running 
on natural grass may reduce stress on the musculoskeletal 
system and alter gait compared with running on a more rigid 
surface such as concrete or asphalt [66, 67, 151]. Similarly, 
there may be differences in kinematic and kinetic patterns 
when running on a treadmill compared with over-ground 
running [14, 53, 55, 67], which is not considered in run-
ning assessment protocols. Research has demonstrated that 
treadmill running may influence lower limb kinematic pat-
terns, landing patterns and sagittal-plane foot strike angles 
when compared with over-ground running [166]. The dif-
ferences exhibited can be attributed to several factors, such 
as treadmill running being unable to mimic instantaneous 
speed changes that inherently occur during over-ground run-
ning, as well as other environmental factors (i.e. irregular 
surfaces and gradient) [166, 181]. However, some consider 
treadmill running can be comparable to over-ground run-
ning depending on the outcome measures examined [166, 
182], which highlights the need to carefully design protocols 
around specific running features of interest.

Most reviewed studies examined running over less than 
1 min, but there was a lack of protocol consistency as stud-
ies varied in the number of steps, distance, number of tri-
als and time of trials that they examined in runners, which 
made it difficult to generalise findings. Because of potential 
changes in running biomechanics over long runs, analysing 
an abundance of steps may be beneficial to gain consistency 
in outcomes [183]. Few authors have addressed a longitudi-
nal running gait analysis, in terms of over an extended time 
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period (e.g. training season) or over longer distances, using 
wearable technology [19–21, 28, 29, 31, 50, 82]. However, 
the studies that examined longer runs assessed running in a 
more natural environment (i.e. on a running track or outside 
over-ground) that allowed for greater time and distances to 
be studied compared with treadmill studies. Examining more 
and longer runs would potentially help divulge data regard-
ing injury mechanisms and performance measures, thus 
informing practice by determining typical healthy running 
patterns as well as atypical gait patterns. Similarly, mov-
ing towards more realistic running environments that may 
be expected for commercial wearables was also reflected in 
the fact that a third of the reviewed studies allowed partici-
pants to wear their own running shoes (with a third requiring 
standardised shoes and the rest not reporting their footwear) 
[116, 119, 150]. This may signify a move towards attempt-
ing to use wearable technology with any individual running 
footwear, which would replicate commercial use.

4.4  Validity and Reliability

Despite their widespread use, fewer than 10% of commer-
cially available wearable technology are validated against an 
accepted ‘gold standard’ [184]. However, our review sug-
gests that validation of research-grade (non-commercial) 
wearable technology for running gait assessment has been 
previously performed. Validity was performed by examining 
outcomes against ‘gold-standard’ reference measures (e.g. 3D 
motion capture, two-dimensional video capture, force plates, 
instrumented treadmills or timing gates). However, differ-
ences in laboratory references make it difficult to compare 
the validation of different wearable technology. For example, 
García-Pinillos et al. used a high-speed video analysis sys-
tem (1000 Hz) as a laboratory reference [101], whereas the 
other studies have compared against the Optojump  Next® and 
video cameras [110], which is largely owing to the expense 
of laboratory references and the need for data capture in a 
more ‘natural’ setting (i.e. not in a gait laboratory). Photo-
electric cell-based systems (i.e. Optojump  Next®) and video 
measures were considered as adequate proxy systems given 
their demonstrated good validity in comparison to force plat-
forms [185, 186], but they may not be the best reference sys-
tem available. Findings from this review would suggest that 
outcomes from wearable technology for running gait should 
be validated against a known and accepted laboratory stand-
ard reference, such as 3D motion capture and force plates, to 
establish validity. Wearable technology was generally found 
to be valid for examining most running gait outcomes, par-
ticularly spatiotemporal measures, compared to laboratory 
references; however, this appears to be dependent upon the 
location of the wearable, the system and testing protocol (e.g. 
speeds) used, as well as the gait characteristics obtained [74, 
85, 101, 130]. For example, accelerometers, gyroscopes or 

IMUs on the foot may provide the most accurate derivations 
of stride measures [99, 101, 128], but caution should be taken 
when using wearables located at the thoracic spine, as out-
comes obtained from such placement appeared inadequate to 
predict gait symmetry, peak vertical and resultant GRF [38, 
121, 129, 130, 133].

Reliability studies of wearables for running gait are less 
established, as the majority of studies included in this review 
used one experimental session, but there were several stud-
ies that performed test–retest runs within the same session 
[99, 103, 104, 110, 130, 134, 136] or two sessions on dif-
ferent days [47, 98, 117, 120, 138, 140, 144, 149]. Results 
demonstrated that outcomes of GCT, flight time and SF are 
reliable from a foot or lumbar spine placement [110], while 
foot-worn IMUs can provide reproducible calculations of 
stride time and SL [61]. Furthermore, placement on the tibia 
and lumbar and thoracic spine had excellent reliability for 
determining vertical GRF from accelerometer data [136].

4.5  Application of Wearables

The reviewed studies of running gait measured with weara-
bles focussed on several key areas of investigation, specifi-
cally injury, fatigue, performance, footwear/surface, meth-
ods for gait detection and intrinsic group factors. There 
were a range of differences in running gait outcomes with 
a group-based analysis of these factors. Despite differences 
being found, the specific spatiotemporal, kinematic and 
kinetic measures that could be used to best investigate cer-
tain aspects of running gait (e.g. fatigue, footwear) require 
further investigation. For example, while there were dif-
ferences in running gait for those with current or previous 
injuries [48, 50, 52], there were no studies that examined 
outcomes for the risk of overuse running injuries.

Fatigue state was examined to understand changes in run-
ning mechanics with the potential for injury. However, few 
studies have exploited the benefits of wearable technology to 
explore real-world long-distance running sessions character-
ised by progressive fatigue [20, 21, 29, 82, 163]. Examining 
runners at varying stages or for the duration of a prolonged 
run in ecologically valid settings will add to the growing body 
of evidence using wearable technology to better understand 
the effects of training and fatigue on changes in running bio-
mechanics [14, 19, 20]. These data can then be used to inform 
the runner of significant atypical changes in their running gait 
that may increase risk of RRIs. For example, it is well docu-
mented that running-related fatigue can affect running kinetics 
[187], kinematics [19, 188, 189] and certain spatiotemporal 
parameters [72, 82, 190]. Strohrmann et al. provides support 
for numerous cases, categorising changes into three groups: 
(1) changes that occurred for all runners (e.g. decrease of the 
heel lift); (2) changes that depended on the runner’s skill level 
(e.g. increase of foot contact duration); and (3) and changes 
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that were highly dependent on the individual, (e.g. increase 
in shoulder rotation) [21].

Footwear was examined in a variety of studies, which pri-
marily focussed on differences in running behaviour, with a 
suggestion that this may lead to injury. For example, Butler 
et al. evidenced that low-arch runners exhibited a reduction in 
peak tibial internal rotation in motion-controlled shoes com-
pared with cushioned shoes, whereas high-arch runners expe-
rienced a lower peak positive acceleration in the cushioned 
shoe compared with the motion control shoe [44]. Similar to 
footwear, running surface has also been studied to examine 
the potential impact on performance and injury. For example, 
de Ruiter et al. demonstrated differences in running speed and 
GCT during outdoor over-ground running on flat terrain, and 
in varying weather conditions [79]. Studies have generally 
found that the footwear/surface can influence running gait 
characteristics, which needs to be carefully considered when 
making performance and injury risk/recovery decisions.

Intrinsic factors of runners may also impact running gait, 
with studies typically splitting cohorts into groups based on 
performance measures (amateur, elite), injury status (i.e. 
previously injured or not), age (young or old) or sex (male, 
female). The reviewed studies primarily assessed recreational 
runners, showing differences in running gait at different lev-
els of performance [32]. For example, novice runners exhibit 
more pronounced changes in running kinematics in response 
to fatigue compared with elite runners [189]. Furthermore, 
Strohrmann et al. stratified runners based on their weekly 
mileage (experience), but did not find differences in mechan-
ics across these groups [21]. However, not all studies have 
demonstrated differences between pre-determined intrinsic 
factor groups for certain outcome measures; for example, 
Burns et al. demonstrated that years of running experience did 
not significantly affect SF, and nor did sex [31]. There was a 
lack of sex-based analyses in the reviewed studies, which was 
surprising considering the established differences in running 
mechanics between male and female individuals [191, 192]. 
For example, Moltó et al. observed no significant differences 
in pelvic tilt or obliquity between the sexes; however, they 
did find significant differences in the range of pelvic rotation, 
with female runners presenting a greater range [36]. Queen 
et al. also evidenced different loading patterns between sexes 

and significant differences existed for the foot contact area 
(middle forefoot), with a maximum force at the lateral forefoot 
dependent on the shoe type [37]. Findings from Clermont 
et al. support this, highlighting the importance of separat-
ing runners into sex-specific subgroups first when classifying 
runners based on performance in order to better reflect the 
kinematic differences between sexes, and this is consistent 
with previous research [32, 193, 194]. This further highlights 
the need for a comprehensive assessment of running gait out-
comes in order to detect characteristics that may be impacted 
by intrinsic factors, which would aid performance enhance-
ment and reduce injury risk/occurrence [29, 72, 189].

4.6  Practical Implications

This review provides insight into how wearable technology 
is used for investigating running biomechanics and there is 
an increasing body of evidence demonstrating its accuracy. 
Although beyond the scope of this review, with continued 
and improved use of wearables in runners, biomechanical 
data may be analysed using advanced techniques, such as 
machine learning and pattern recognition to enable identify-
ing and tracking running demands without direct supervi-
sion. These predictive capabilities would be highly valuable 
to practitioners to monitor performance and fatigue meas-
ures in ecologically valid settings (Table 7).

4.7  Review Limitations

Several limitations of the review must be considered. The 
search was limited to four databases, albeit integrated by 
reference lists and hand searches to identify other relevant 
papers. The use of stringent exclusion criteria may lead to the 
omission of potentially relevant data. First, articles not pub-
lished in English pose a language bias regarding article selec-
tion. Additionally, sensor modality was restricted to wearable 
accelerometers, gyroscopes, magnetometers or a combination 
of those (IMU), or pressure insoles, thus excluding GPS or 
mobile phone applications, which are common amongst run-
ners [195]. Because of the varying definitions and methods 
of calculation, studies were also excluded if they focused 
solely on shock, stiffness or neuromuscular load. We excluded 

Table 7  Summary of directions for future research using wearable technology

Future research directions

Test the validity and reliability prior to performing clinical or applied studies
Multimodal wearable technology may give more comprehensive assessment of running gait
Studies require an appropriate sample size
Using wearable technology during natural outdoor running over time would help confirm laboratory findings or expand upon our knowledge
Examine effects of age and sex on running gait outcome measures
Report outcome measures as comprehensively as possible
Investigate the usability, comfort, as well as the wearer’s physical, psychological and social preferences regarding technology
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studies that applied interventions as this would influence the 
gait outcomes and may not be representative of a runner’s 
typical gait. Finally, because of the size and heterogeneity of 
the articles included within this review, no meta-analysis or 
formal quality assessment of each study was performed.

5  Conclusions

Wearable technology is rapidly becoming a feasible means to 
quantify running biomechanics in a more ecologically valid 
manner, with applications in sports medicine and sports 
performance. This review highlighted that most studies that 
have examined running gait using wearable sensors have 
done so with young adult recreational runners, using one 
IMU sensor (on shoe or tibia), with participants running on a 
treadmill and reporting outcomes of GCT, SL, SF and tibial 
acceleration. While this review comprehensively synthesised 
a large (n = 131) number of previous studies, future studies 
are needed to determine optimal outcome definitions, sensor 
site, type of sensor and outcomes of interest for running gait.

Appendix 1 Data extraction form

Study
General information
Title, authors(s), year
Study characteristics
Study type (i.e. validation, reliability, application)
Participant characteristics 
Characteristics; age, sex, height, weight, numbers in each group, type 

(e.g. injured, RFS, recreationally active)
Wearable Technology
Type of device (i.e. IMU, accelerometer, pressure insole)
Model and brand of wearable technology (e.g. Shimmer3, Shimmer 

Inc.)
Number of devices used
Location of device(s)
Device characteristics; accelerometer range, gyroscope range, sam-

pling frequency, dimensions, weight
Methodology
Test protocol
Environment (e.g. indoor, outdoor), surface type (e.g. road, tread-

mill), gradient speed(s)
Analysed distance/time/steps
Outcome measures
What was measured using wearable technology? 
Reference measures or additional tools used (e.g. 3D motion capture, 

EMG) 
Analysis
Statistical techniques used
Results
Main findings according to the study author(s)
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