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Abstract
Objective. Gait assessments have traditionally been analysed in laboratory settings, but thismay not
reflect natural gait.Wearable technologymay offer an alternative due to its versatility. The purpose of
the studywas to establish the validity and reliability of temporal gait outcomes calculated by the
DANU sports system, against a 3Dmotion capture reference system.Approach. Forty-one healthy
adults (26M, 15 F, age 36.4± 11.8 years) completed a series of overgroundwalking and jogging trials
and 60 s treadmill walking and running trials at various speeds (8–14 kmhr−1), participants returned
for a second testing session to repeat the same testing.Main results. For validity, 1406 steps and 613
trials during overground and across all treadmill trials were analysed respectively. Temporal outcomes
generated by theDANU sports system included ground contact time, swing time and stride time all
demonstrated excellent agreement compared to the laboratory reference (intraclass correlation
coefficient (ICC)> 0.900), aside from ground contact time during overground joggingwhich had
good agreement (ICC= 0.778). For reliability, 666 overground and 511 treadmill trials across all
speedswere examined. Test re-test agreementwas excellent for all outcomes across treadmill trials
(ICC> 0.900), except for swing time during treadmill walkingwhich had good agreement
(ICC= 0.886). Overground trials demonstratedmoderate to good test re-test agreement
(ICC= 0.672–0.750), whichmay be due to inherent variability of self-selected (rather than treadmill
set) pacing between sessions. Significance. Overall, this study showed that temporal gait outcomes
from theDANUSports Systemhad good to excellent validity andmoderate to excellent reliability in
healthy adults compared to an established laboratory reference.

1. Introduction

Gait analysis involves the systematic study of humanwalking or running, whereby quantitative information on
walking or running performance and abnormalities arising frommusculoskeletal (Bramah et al 2018), cardio-
pulmonary (Zago et al 2018, Liu et al 2019) and neurological pathologies (Celik et al 2021) or injuries can be
obtained (Dever et al 2022). As a result, gait analysis has been employed in sports performance andmedicine,
where information can be used to improve athlete performance (Boulgouris et al 2005, Shun-Ping et al 2014,
Moore 2016, Burns et al 2019,Mason et al 2022) or diagnose andmonitor injury or health conditions (Meardon
et al 2011, Noehren et al 2012, Baker et al 2016). For example, gait has been found to be a useful biomarker for
neurological concussion injuries (Celik et al 2021, Powell et al 2021,Dever et al 2022) ormusculoskeletal injuries
(Bramah et al 2018), whichwould otherwise be undetected.
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Traditional gait analysis has largely been performed in a laboratory setting using 2D video analysis (Pipkin
et al 2016, Dingenen et al 2018), 3Dmotion-capture systems (Pfister et al 2014), force plates (Leitch et al 2011),
instrumentedwalkwaymats or treadmills (Donath et al 2016,Higginson 2009, Parati et al 2022). Although these
methods have high accuracy inmeasuring gait outcomes (Dugan andBhat 2005,Higginson 2009), there are
inherent drawbacks, such as the expense of equipment, the need for trained practitioners to collect and analyze
data and the requirement to attend a laboratory setting. Therefore, traditional ‘gold-standard’ techniques are not
readily available within sport performance or clinical settings, and they lack generalizability and ecological
validity (Dugan andBhat 2005,Higginson 2009) (i.e. gait in a laboratorymay not reflect gait in the real-world).
Laboratory settings lead to the use of constrained protocols thatmay not represent typical real-world gait, such
as assessing intermittent trials of single foot strikes on force plates, with unnatural force platform targeting
(Challis 2001) and limited numbers of consecutive steps (Higginson 2009), whereas runners approximately take
1500 steps permile (Hoeger et al 2008) and the clinical and general populations typically take 5000–10 000 steps
per day in the real-world (Schuna et al 2013,Del PozoCruz et al 2022, Lempriere 2022). Gait analysis algorithms
typically performbest under continuouswalking bouts andwith greater duration of recording, and due to
potential changes inmechanics over long periods of walking or running, analyzing an abundance of stepsmay be
beneficial (Storm et al 2018, Toth et al 2023, Veerubhotla et al 2021). Numerous studies have sought to overcome
the issue of intermittent overground trials by using instrumented treadmills, however, further studies
demonstrate the inconsistencies in gait between over-ground and treadmill locomotion (Chambon et al 2015),
with the treadmill providing an external cue for gait (i.e. external rhythmof gait is set by the treadmill which
influences gaitmetrics) (Thumm et al 2018). In order to enhance understanding of real-world gait, a range of
intermittent and continuous gait tasks or conditionsmay be requiredwithin laboratory gait analysis assessment
to represent the spectrumof gait (and gait outcomes) seen in the real-world (Mann et al 2016).

Wearable technology offers a low-cost (affordable) and lightweight alternative to overcome traditional gait
assessment limitations (Stuart et al 2021), with such technology becoming increasingly accepted and adopted by
users (sports professionals, patients etc) and clinicians (Willy 2018). Themajority of commercial or research-
gradewearables that have previously been used for gait analysis include accelerometers, gyroscopes, and
magnetometers applied individually or in combination as an inertialmeasurement unit (IMU) (Tao et al 2012,
Mason et al 2022).More recently, advances in textile technology have allowed for development ofmulti-modal
devices through integration of pressure sensors and IMUs into flexiblematerial that can be continuously worn in
an unobstructivemanner to provide comprehensive gait outcomeswithin any environment, such as
instrumented socks.While wearable technologies for gait assessment are being increasingly used, fewer than
10%of commercially available wearable technologies for gait analysis are analytically validated against an
accepted ‘gold-standard’ (reference tool) (Storm et al 2016), with even fewer establishing reliability of wearable
sensor derived gait outcomes (Mason et al 2022). Establishing the analytical validity and reliability of such
wearable technologies against reference tools is vital to ensure that underlying algorithms that provide gait
outcomes are accurate and provide reliable outcomes within specific populations (i.e. healthy or clinical groups)
that performance and clinical decisions could be definitivelymade (Goldsack et al 2020, Rochester et al 2020).
Following initial analytical validationwithin cohorts of interest, wearable devices and outcomes can be examined
for specific performance or clinical usewith investigation of gait in various settings (i.e. lab or outdoor/real-
world), thus developing greater understanding of gait in both clinical (i.e. neurological,musculoskeletal, or
cardio-pulmonary conditions) (Hulleck et al 2022) and sporting contexts (i.e. performance, fatigue, and injury
mechanisms) (Stuart et al 2021).

TheDANUSports System (DANU, Ltd, Dublin, Ireland) is a commercially available system that combines
capacitive pressure sensors on the sole of the foot and tibia based IMUs (one on each leg) encompassedwithin a
sock format, whichwirelessly synchronizes and streams data to amobile tablet. TheDANUSystemoffers a large
quantity of capacitors and high sampling frequency (i.e. 15 capacitors and 250 Hz inDANUSystem) that is
greater than other similar wearable systems (e.g. 13 capacitors and 50 Hz,Moticon insoles (MoticonGmbH,
Munich, Germany)) (Stöggl andMartiner 2017), whichwill allow formore comprehensive and potentiallymore
accurate gait outcomes (Tao et al 2019). TheDANU system software allows for collection of gait data from the
wearable socks within any environment and provides automatic analysis, without the requirement for gait
research knowledge or expert data processing. TheDANU software package allows the user to select various
instrumented tests of walking or running (intermittent or continuous tasks) and automatically generates a report
for each participant (or group of participants). At present, theDANU report provides temporal gait outcomes
derived from initial contact (heel strike) andfinal contact (toe-off) of the feet, which include ground contact time
(GCT), stride time and swing time.Monitoring temporal gait characteristics is important in clinical and sporting
contexts. Regarding sport performance, GCT is themost reported outcome in runningwearables and has been
indicated as a critical factor to running economy (Santos-Concejero et al 2015,Mason et al 2022).Morin et al
(Morin et al 2007)demonstrated that 90%–96%of the variance in leg stiffness can be explained byGCT, in turn
less economical runners are shown to have amore slacken running style during ground contact as reflected by
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the low vertical stiffness (Heise andMartin 2001,Moore 2016). In clinical settings, temporal gait outcomes have
been shown to be useful clinicalmeasures that can detect gait deterioration due to aging (Hollman et al 2011,
Chung et al 2022), or pathology (Lemke et al 2000) and improvements in gait due to rehabilitation or training
(Patterson et al 2008, Smania et al 2011, Vitale et al 2012, Abd El-Kafy and El-Basatiny 2014). The simple and
automatic gait output from theDANU system ensures that data collection is accessible and interpretable within
performance or clinical settings, or within large trials. However, theDANUcommercialmulti-modal systemhas
yet to be evaluated for analytical validity or reliability of gait outcomes, and such systems require validation
against robust previously validated systems (‘gold-standard reference tools’) in controlled environments (i.e.
laboratories) before being further validated and deployedwithin performance or clinical settings, or clinical
trials (Goldsack et al 2020, Rochester et al 2020). Therefore, the purpose of this studywas to determine the
analytical validity, as well as test re-test reliability of gait outcomes obtained via theDANUSport Systemduring
walking and running compared to a concurrently used ‘gold-standard’ 3Dmotion capture system in healthy
adults.

2.Methods

2.1. Participants
Forty-one healthy participants were recruited from running clubs in theNorth-East of England. Inclusion
criteria required participants to be aged>18 years, able to run unassisted for short periods. Prior to testing, all
participants completed a questionnaire to provide information pertaining to their demographics, injury, and
medical history, sporting pursuits and running personal bests. Injurywas classified as ‘anymuscle, bone, tendon
or ligament pain in the lower back/legs/knee/foot/ankle that caused a restriction or stoppage of running
(distance, speed, duration or training) for at least 7 d or 3 consecutive scheduled training sessions, or that
required the runner to consult a physician or other health professional’ (Yamato et al 2015). Ethical approval was
granted by theNorthumbriaUniversity Research EthicsCommittee (reference: 33358) and this study conformed
to theDeclaration ofHelsinki. All participants were suppliedwith informed consent and gave verbal andwritten
consent before performing testing inNorthumbriaUniversity’s Gait and Biomechanics Laboratory, City
Campus.

2.2. Instrumentation
2.2.1.Wearable technology: DANU sports system
TheDANU sports system (figure 1) consists of a pair of textile socks, that wereworn on both feet. Each sock
contains 15 silicone based capacitive pressure sensors, and an IMUmodule that attaches to themedial surface of
themid-shank of tibia. Each IMUmodule is Bluetooth enabled for data transmission and is comprised of two
configurable tri-axial accelerometers (Accelerometer 1±2 g,±4 g,±8 g or±16 g, Accelerometer 2±100 g,
±200 g and±400 g), gyroscope (±2000° s−1), magnetometer, andwith variable sampling rates (60–250 Hz).
The IMUmodule includes in-builtmemory for data collection.Here, theDANU sports systemwas configured
to a default sampling rate of 250 Hz,±16 g,±200 g accelerometers and±2000° s−1 gyroscope. A standing
calibration trial was recorded prior to participant assessment. Datawas collected via Bluetooth onApple devices
2018 or later (iPad or iPhone devices are required to have at least Bluetooth 5.0 connectivity), and data processing
was run through a custom-made Apple application for real-time feedback and visualization, as per the
manufacturer’s guidelines.

2.2.2. Reference systems
During the overground trials the reference system consisted of a 14-camera 3Dmotion capture system,
distributed around a space of 9.8× 7.9× 3.2 m3, sampling at 250 Hz (VICON,Oxford, UK) and two staggered
0.5m-long force plates (AMTI,Watertown,MA,USA), sampling at 1000 Hz, embedded in themiddle of a
walkway. For the treadmill running trials the reference system consisted solely of the 3Dmotion capture system.
The calibration of theVicon systemwas conducted before each participant. Sixteen reflectivemarkers were
placed on the participants lower limb before testing, and a static calibration trial was initially collected to form a
musculoskeletalmodel (Kim et al 2021). Using a small amount of double-sided tape, themarkers were attached
bilaterally to the following landmarks: anterior superior iliac spine, posterior superior iliac spine,mid-lateral
thigh, lateral knee joint line, lateralmid-shank, lateralmalleoli, calcaneal tuberosity, and base of the second
metatarsal.

Participant specific information of weight, height, ankle width, kneewidth, and leg length (fromposterior
iliac spine tomedialmalleolus)weremeasured and inputted in the lower bodymodel (Sabharwal andKumar
2008). The Plug-in-Gait (PiG) lower bodymodel was used to analysemovement at the joints and evaluate all
parameters (Leboeuf et al 2019). The lower bodywasmodelled as seven segments (one pelvis, two thighs, two
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shanks, and two feet). A normal gait cycle was defined from the initial heel-to-heel contact with the same limb.
Additional information of the PiG calculations can be found onVicon’s website.

Data processingwas performed inViconNexus. Allmarkers were labelled, andmarker trajectories were
filtered using a fourth order low-pass Butterworth filter via dynamic plug-in gaitmodel with 6 Hz cut-off
frequency. For the overground trials, identification of gait events (initial contact and toe-off)was determined
using the vertical ground reaction force from force plate data fromViconNexus. These events were detected by
applying a threshold of 20 N in vertical ground reaction force (Smith et al 2015). For treadmill trials, gait
identificationwas achieved through visual inspection of initial contact and toe off for consecutive strides over
the trials. The trajectory of the heel and toemarkers in the Z planewere examined, so that theminimumof the
trajectory of one stride specified the timestamp of initial contact. The traced trajectory of the toemarker was
used to specify the toe’smovement, so that theminimumof the trajectory specified the timestamp of a toe-off
event. The initial contact and toe-off events of left and right foot steps were combined in order to estimate for
each stepGCT, swing time and stride time (Falbriard et al 2018). Ground contact time and swing timewere
defined by the time between initial contact and toe-off events and between toe-off and initial contact events,
respectively.

2.3. Procedures
A concurrent validation studywas conducted to determine agreement between theDANU sports system and the
3Dmotion capture system (Mason et al 2023). Prior to commencing the protocol participants were provided the
opportunity to run on the treadmill (Spirit fitness XT485) at a comfortable speed for awarm-up and to
familiarise themselves. For the overground trials, participants were asked towalk at a self-selected speed across
thewalkway (10 m), three trials were collected. This process was repeated for the over-ground running trials. For
the treadmill trials, participants completed 60 s of walking at a self-selected speed and then ran at four
standardised speeds (i.e. 8, 10, 12 and 14 km hr−1). If a participant could not reach a certain speed (i.e. 12 or
14 kmhr−1) or did not feel comfortable at that speed, then it was not completed (See table 1). To ensure
participant safety, the order of speedwas consistent across participants, starting at the slowest speed (i.e. 8 km
hr−1) and progressing to the fastest (i.e. 14 km hr−1). Datawas collected for 60 s at each speed. A period of 60 s
was chosen as it generally alignswith other similar studies in the fieldwith data capture periods ranging from20 s
(McGrath et al 2012) to 90 s (Bailey andHarle 2015, Tan et al 2020,Mason et al 2022). Participants could have
breaks between trials or could abort the trial at any time. Participants were providedwith a standardised, neutral
cushioning running shoe (SauconyGuide Runner) towear during testing to ensure consistency and remove bias
fromgait-affecting cushioningwithin e.g. support cushioning running shoes (Roca-Dols et al 2018). The
reference andwearable technologies were recorded simultaneously to allow direct comparison of the gait
outcomes. To assess test re-test reliability, participants completed the protocol in the same format in a repeated-
measures design, approximately oneweek after the first session.

The outcomemeasures were the temporal gait characteristics asmeasured by theDANU sports system and
reference system,GCT, swing time and stride time.Outcomeswere derived from the proprietaryDANUSport
System gait algorithms that processed datawithin theDANU software andmobile application/cloud. In brief

Figure 1.DANU sports system. Reproducedwith permission fromDanu Sports Limited.
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Table 1.Mean difference, ICC(2,1), limits of agreement (LOA%), and pearson correlation between the reference system and theDANU sports system.

Task Outcome Reference system DANU
Validity

Mean (SD) Mean (SD) Mean difference ICC Lower bound Upper bound LoA (%) LoA95% Pearson r Pearson p

Overground

Walk GCT (ms) 691.04 (58.57) 690.45 (61.95) 0.62 0.914 0.901 0.925 7.1 49.26 0.915 <0.001

(n= 41) Swing Time (ms) 437.65 (47.62) 439.66 (47.66) 1.23 0.972 0.967 0.976 9.3 40.61 0.972 <0.001

Stride Time (ms) 1121.07 (90.42) 1124.85 (90.39) 3.78 0.993 0.992 0.994 1.9 20.99 0.993 <0.001

Jog GCT (ms) 294.69 (38.99) 294.07 (34.35) 0.55 0.778 0.758 0.814 15.6 46.34 0.792 <0.001

(n= 41) Swing Time (ms) 443.32 (49.56) 444.38 (50.85) 1.06 0.975 0.971 0.979 5.1 21.88 0.976 <0.001

Stride Time (ms) 735.10 (53.17) 739.14 (53.74) 4.04 0.979 0.976 0.982 2.9 21.31 0.979 <0.001

Treadmill

Walk GCT (ms) 663.55 (54.58) 659.22 (55.05) 4.33 0.981 0.976 0.986 3.1 20.81 0.981 <0.001

(n= 40) Swing Time (ms) 408.72 (41.01) 411.95 (39.80) 3.22 0.966 0.956 0.974 5.0 20.63 0.967 <0.001

Stride Time (ms) 1072.19 (83.59) 1071.20 (84.60) 0.99 0.995 0.994 0.996 1.5 16.37 0.995 <0.001

8 km hr−1 GCT (ms) 290.46 (27.17) 283.33 (26.84) 7.13 0.909 0.882 0.931 7.9 22.55 0.909 <0.001

(n= 30) Swing Time (ms) 454.12 (44.00) 462.48 (45.25) 8.37 0.979 0.972 0.984 3.9 18.01 0.979 <0.001

Stride Time (ms) 745.36 (40.71) 745.81 (40.87) 0.45 0.998 0.998 0.999 0.6 4.70 0.998 <0.001

10 km hr−1 GCT (ms) 281.74 (30.83) 273.48 (29.50) 8.26 0.936 0.920 0.949 25.3 69.56 0.937 <0.001

(n= 41) Swing Time (ms) 447.45 (45.11) 456.71 (43.71) 9.26 0.972 0.964 0.978 4.5 20.39 0.972 <0.001

Stride Time (ms) 729.59 (40.98) 730.18 (39.19) 0.59 0.997 0.996 0.998 0.8 5.93 0.997 <0.001

12 km hr−1 GCT (ms) 270.85 (33.43) 262.40 (30.78) 8.45 0.930 0.911 0.945 8.9 23.56 0.933 <0.001

(n= 40) Swing Time (ms) 438.76 (45.48) 446.75 (45.13) 7.99 0.970 0.961 0.976 4.9 21.93 0.970 <0.001

Stride Time (ms) 707.70 (42.07) 709.15 (40.37) 1.46 0.996 0.995 0.997 0.9 6.69 0.996 <0.001

14 km hr−1 GCT (ms) 258.77 (31.19) 249.06 (27.76) 9.71 0.909 0.884 0.928 9.8 24.74 0.915 <0.001

(n= 37) Swing Time (ms) 430.17 (43.37) 438.15 (41.51) 7.98 0.953 0.940 0.964 5.9 25.42 0.954 <0.001

Stride Time (ms) 688.12 (39.62) 687.32 (39.81) 0.80 0.992 0.990 0.994 1.4 9.62 0.992 0.009

5

P
hysiol.M

eas.44
(2023)115001

R
M
ason

etal



outcomeswere defined as follows: GCTwasmeasured as the time (inms) elapsed between initial contact (where
the footfirst contacts the ground) andfinal/terminal contact (where the foot last leaves the ground). Swing time
was defined as the time (inms) the foot spends off the ground in the gait cycle, defined by the time from toe off to
heel strike of the same foot. Stride timewasmeasured as the time (inms) between two consecutive heel strikes of
the same foot time. These outcomeswere obtained across overground and treadmill trials, duringwalking and
running.Outcomeswere averaged over the one-minute trials.

2.4. Statistical analyses
All gait outcomes calculated byDANU sports systemwere comparatively analysedwith the same outcomes
calculatedwithin the 3Dmotion capture data. Gait outcomes were averaged over the 60 s trials. Data analysis was
conducted in SPSS v27 (SPSS Inc., Chicago, IL, USA). Shapiro-Wilks tests indicated a normal distribution of all
data (p< 0.05). Subsequently, intra-class correlation (IC(2,1))models examined absolute agreement between
theDANU sports system and the reference (Zago et al 2018)Dmotion capture system. A predefined ICC
performance scale was deployed, defined as poor (<0.50), moderate (0.50–0.75), good (0.75–0.90) or excellent
(>0.90) (Koo and Li 2016).Mean error were calculated between theDANU sports system and the reference
(Zago et al 2018)Dmotion capture data for descriptive purposes and are observed as an accuracymetric in the
outcomes. In order to demonstrate the bias within the limits of agreement (LoA)were calculate and Bland-
Altman plots were used to visually assess the agreement between systems (Bland andAltman 1986). To
determine the test re-test reliability of theDANU sports system, Pearson’s correlation coefficients (r), ICCs and
LoAbetween the two testing time-points were calculated (Shrout and Fleiss 1979). An acceptable statistically
significant thresholdwas set at p< 0.05.

3. Results

3.1. Participants
A total of forty-one participants completed the study (26Male, 15 Female; 36.4± 11.8 years; 173.3± 8.7 cm;
72.6± 12.2 kg). Participants exhibited a range of running abilities (5 kmpersonal best; 23:31± 04:49). Of the 41
participants, some data loss or dropout during higher speedswas experienced (table 1). Upon preliminary
observation of the quantified outcomes, no significant outliers were identified. For the validation aspect, a total
of 1406 steps during overgroundwalking and jogging trials were analysed. For treadmill testing, a total of 613
trials across all speedswere examined. For reliability analysis, 666 overground trials and 511 treadmill trials
across all speedswere examined. Table 1 shows the descriptive gait data statistics from, alongwith the absolute
agreement between the two systems for ICC, LoA (%and 95%) and r values. The agreement between theDANU
sports system and 3Dmotion capture is visually displayed via Bland-Altman plots infigure 2.

3.2. Ground contact time
Agreement between the outcomes from theDANUSport System and the reference systemwereweakest during
the overground jogging, demonstrating good agreement (ICC(2,1) 0.778, LoA%15.6). For overgroundwalking
and all treadmill trials excellent agreementwas displayed (ICC(2,1)>0.900, LoA%3.1 to 25.3) (table 1 and
figures 2(a) and 3(a)).Minor variations in the validity of theDANU sports systemwith respect to sex can be seen
(Supplementary tables 1(a) and 1(b)). Intraclass correlations show excellent agreement during overground
walking and treadmill running at 8 km hr−1 formales (ICC(2,1) 0.936, LoA%6.7 and ICC(2,1) 0.903, LoA%6.2,
respectively) and good agreement for females (ICC(2,1) 0.869, LoA%8.0 and ICC(2,1) 0.782, LoA%10.8,
respectively). Ground contact time demonstrated lowmean difference across all trials when compared to 3D
motion capture. Conversely,mean difference rate increases as a function of speed during treadmill trials
(4.33–9.71 ms), theDANU sports system tended to under-estimate GCT, table 1.

With respect to reliability, intraclass correlations showmoderate reliability forGCTduring overground
walking and jogging (ICC(2,1) 0.741 and 0.677 respectively, LoA%7.1 to 15.6), and excellent agreement (ICC
(2,1)>0.900, LoA%3.4 to 7.2) across all treadmill speeds, table 2. Differences in reliability of theDANU sports
systembased on sexwere observed during overground trials. Females exhibitedmoderate and excellent
reliability during overgroundwalking and jogging, respectively (ICC(2,1) 0.647 and 0.978, LoA%13.4 and 17.8).
Formales intraclass correlations show good andmoderate reliability forGCTduring overgroundwalking and
jogging, respectively (ICC(2,1) 0.787 and 0.516, LoA%14.7 and 18.5) (supplementary tables 2(a) and 2(b)).

3.3. Swing time
Intraclass correlations demonstrate an excellent agreement between theDANU sports system and the reference
system for swing time (ICC(2,1)>0.900, LoA%3.9 to 9.3). Robustness at the full range of speeds is
demonstrated, with lowmean differences throughout (1.06–9.26 ms). TheDANU sports system tends to over-
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Figure 2.Bland-Altman plots illustrating the absolute agreement between theDANU sports system and 3Dmotion capture system
during overgroundwalking and running. (A)Ground contact time (ms), (B) Swing time (ms), (C) Stride Time (ms).

Figure 3.Bland-Altman plots illustrating the absolute agreement between theDANU sports system and 3Dmotion capture system
during treadmill walking and running. (A)Ground contact time (ms), (B) Swing time (ms), (C) Stride time (ms).
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Table 2.Mean difference, ICC(2,1), limits of agreement (LOA%), and pearson correlation between test-retest for theDANUSports system.

Task Outcome Test Retest
Reliability

Mean (SD) Mean (SD) MeanDifference ICC (2,1) Lower Bound Upper Bound LoA (%) LoA95% Pearson r Pearson p

Overground

Walk GCT (ms) 689.17 (64.17) 687.31 (60.07) 1.86 0.741 0.687 0.786 12.8 87.57 0.814 <0.001

(n= 41) Swing Time (ms) 439.02 (48.13) 437.70 (45.59) 0.93 0.698 0.625 0.758 15.2 65.73 0.835 <0.001

Stride Time (ms) 1116.25 (120.84) 1120.05 (87.33) 0.63 0.750 0.687 0.801 11.4 127.15 0.873 <0.001

Jog GCT (ms) 295.23 (36.42) 292.91 (32.18) 2.31 0.677 0.616 0.730 17.9 53.81 0.687 <0.001

(n= 41) Swing Time (ms) 444.05 (49.99) 444.70 (51.73) 0.65 0.672 0.533 0.775 16.6 74.17 0.712 <0.001

Stride Time (ms) 740.01 (51.39) 738.30 (55.98) 1.71 0.685 0.619 0.742 11.0 82.16 0.694 <0.001

Treadmill

Walk GCT (ms) 655.98 (54.43) 658.12 (54.19) 2.14 0.978 0.968 0.986 3.4 22.42 0.978 <0.001

(n= 40) Swing Time (ms) 411.83 (40.21) 409.32 (40.31) 2.50 0.886 0.833 0.922 9.0 37.15 0.885 <0.001

Stride Time (ms) 1067.61 (84.53) 1067.05 (83.32) 0.56 0.983 0.974 0.988 2.9 31.07 0.983 <0.001

8 km hr−1 GCT (ms) 283.48 (27.78) 282.07 (28.09) 1.41 0.978 0.967 0.986 4.1 11.69 0.978 <0.001

(n= 30) Swing Time (ms) 460.48 (45.88) 462.39 (45.75) 1.91 0.985 0.977 0.990 3.4 15.50 0.985 <0.001

Stride Time (ms) 744.60 (40.26) 744.46 (40.44) 0.13 0.989 0.984 0.993 1.5 11.53 0.989 <0.001

10 km hr−1 GCT (ms) 272.99 (29.36) 273.08 (30.94) 0.09 0.988 0.982 0.992 3.4 9.25 0.989 <0.001

(n= 41) Swing Time (ms) 456.56 (42.99) 455.44 (44.80) 1.11 0.987 0.982 0.991 3.0 13.69 0.988 <0.001

Stride Time (ms) 729.88 (37.97) 728.57 (38.89) 1.32 0.989 0.984 0.992 1.5 11.24 0.989 <0.001

12 km hr−1 GCT (ms) 259.22 (31.35) 261.718 (31.26) 2.49 0.962 0.945 0.973 7.2 11.92 0.962 <0.001

(n= 40) Swing Time (ms) 445.66 (46.20) 444.10 (46.05) 1.56 0.978 0.969 0.985 4.2 18.79 0.978 <0.001

Stride Time (ms) 708.47 (40.48) 708.43 (40.80) 0.03 0.979 0.970 0.986 2.3 16.14 0.980 <0.001

14 km hr−1 GCT (ms) 247.69 (27.29) 249.52 (28.14) 1.84 0.987 0.981 0.991 3.5 8.38 0.988 <0.001

(n= 37) Swing Time (ms) 439.68 (43.32) 437.49 (42.93) 2.30 0.971 0.968 0.980 4.6 20.33 0.971 <0.001

Stride Time (ms) 687.18 (41.21) 687.21 (39.85) 0.04 0.977 0.967 0.984 2.5 16.94 0.977 <0.001
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estimate swing time, especially at higher speeds, table 1 andfigures 2(b) and 3(b).With respect to sex and validity
of theDANU sports system formeasuring swing time, no significant differences were found (supplementary
tables 1(a) and 1(b)).

Excellent reliability (ICC(2,1)>0.900, LoA%3.0 to 4.6) across all treadmill running trials can be seen, with
good reliability during treadmill walking (ICC(2,1) 0.886, LoA%9.0). Overgroundwalking and jogging
demonstratedmoderate reliability (ICC(2,1) 0.698 and 0.672, respectively, LoA%9.3 and 5.1), table 2. Excellent
reliability for swing time during overground joggingwas observed for females (ICC(2,1) 0.941, LoA%15.9),
compared tomoderate reliability inmales (ICC(2,1) 0.677, LoA%17.6). No additional significant differences
were observed in the reliability of theDANU sports system formeasuring swing timewith respect to sex
(supplementary tables 2(a) and 2(b)).

3.4. Stride time
Intraclass correlations demonstrate an excellent agreement between theDANU sports system and reference
system for stride time across all trials (ICC(2,1)>0.900), with lowmean differences throughout (0.45–4.04 ms),
table 1 andfigures 2(c) and 3(c).With respect to sex and validity of theDANU sports system formeasuring stride
time, no significant differences were found (supplementary tables 1(a) and 1(b)).

Overgroundwalking demonstrated good reliability (ICC(2,1) 0.750, LoA%11.4) and intraclass correlation
performance slight degrades at higher speeds, demonstratingmoderate reliability for overground jogging (ICC
(2,1) 0.685, LoA%11.0). Across all treadmill trials excellent reliability (ICC(2,1)>0.900, LoA%1.5 to 2.9)was
shown, table 2.Moderate reliability for stride time during overgroundwalkingwas observed for females (ICC
(2,1) 0.523, LoA%11.7), compared to good reliability inmales (ICC(2,1) 0.826, LoA%10.8). No additional
significant differences were observed in the reliability of theDANU sports system formeasuring stride timewith
respect to sex (supplementary tables 2(a) and 2(b)).

4.Discussion

The present study conducted an examination of the analytical validity and test re-test reliability of gait outcomes
(temporal outcomes ofGCT, stride time and swing time)measured by theDANU sports system, demonstrating
thatwalking and running gait outcomes had good to excellent agreementwith a ‘gold-standard’ reference and
moderate to excellent reproducibility in healthy adults in laboratory conditions. Across walking and running
trials, the identified gait outcomes and differences between the chosen gait speeds fall within the expected ranges
when compared to other validated and established gait analysis systems in healthy adults (Lee andHidler 2008,
Braun et al 2015,Mason et al 2022), and reliability values are consistent with those reported for other wearable
technologies for gait analysis (Godfrey et al 2014).

4.1. Validity and reliability of gait outcomes duringwalking
Temporal gait outcomes ofGCT, stride time and swing time that were derived during overground and treadmill
walking in healthy adults, which generally had excellent validity (ICC(2,1)>0.900) (tables 1 and 2, figures 2 and
3). The test re-test reliability results indicated amoderate to good reliability (ICC(2, 1) 0.698–0.750) during
overgroundwalking trials andmoderate to excellent reliability (ICC(2, 1) 0.886–0.9893) during treadmill
walking trials. These analytical validation results are important, as temporal walking gait outcomes are clinically
relevant/meaningfulmetrics. For example, temporalmetrics are sensitive to classify fallers and non-fallers in
neurological patients (Zhou et al 2020, Shema-Shiratzky et al 2022).

Our findings are comparable to others that have validated or examined repeatability of wearable technology
for gait analysis. Other systems commonly detect gait by placing sensors, typically IMUs or accelerometers, at the
lumbar (Bugané et al 2012,Morris et al 2019), tibia (Iosa et al 2016,Mancini andHorak 2016), or shoe (Donath
et al) of the participant.Many other systems are shown to be reasonably valid and reliable (Henriksen et al 2004,
Iosa et al 2016). Yet, this is thefirst study to use a gait analysis system that combined capacitive pressure sensors
on the sole of the foot and tibia based IMUs encompassedwithin a sock form factor. In contrast to the current
study, previous work has demonstrated better validity and reliability for basic spatiotemporal gait outcomes,
such asGCTor stride time, rather than outcomes of relative phase, such as swing time that showpoorer
agreement (Aminian et al 2002, Sabatini et al 2005). Difficulties detecting relative phases of the gait cycle with
otherwearable systems have been suggested to be due to limitations in the accuracy of detecting toe off events
(Washabaugh et al 2017), whichmay also underlie poorer agreement for theDANU systemsGCToutcome.
Typically, the outcomes of interest that are used for gait analyses are spatiotemporal gait outcomeswhich require
the identification of initial contact (i.e. heel strike) and toe off events for each step (Sprager and Juric 2015,
Benson et al 2019). However, theDANU systems gait event detection algorithm is proprietary, which limits
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detailed discussion or understanding of agreement results, whichmay require algorithms to become open-
source to allow for future improvement.

Themoderate reliability of temporal gait outcomeswhenwalkingmay be due to the task being undertaken,
as overground and treadmill walking have different underlyingmuscle activity (Lee andHidler 2008).
Additionally, self-selected paced overground trialsmay lead to unnatural force plate targeting (Challis 2001) and
are influenced by landing patterns when comparedwith natural gait (VanHooren et al 2020). The
aforementioned could shed light onwhy variations in reliability emerged in the overground trials. Specifically,
theDANU sports system exhibited lower reliability duringwalking and higher reliability during jogging for
females in these scenarios. Interestingly, these outcomes did not alignwith the results obtained in treadmill
trials. It’s possible that participants needed to deliberately adjust their stride length during overground trials to
interact with the force plates, for instance, with females potentially increasing their stride length duringwalking.
This intentional alteration of stride lengthmay have introduced greater variability into their gait patterns (Challis
2001). Similarly, the external prompt of the treadmill at set speeds of walkingmay reduce the variability of step
timing and require less cognitive resources, therefore agreement between sessionswould be better for treadmill
rather than overgroundwalking at a self-selected pace (Thumm et al 2018, Keller Xin Yu 2021). Therefore, the
moderate to excellent test re-test reliability of theDANU system for walking outcomesmay reflect task-
dependent and intrinsic human variability.

4.2. Validity and reliability of gait outcomes during running
During running all reported gait outcomes showed excellent validity (ICC(2,1)>0.90) across overground and
treadmill trials, as well as speeds, except forGCTduring overground jogging that displayed good accuracy (ICC
(2, 1) 0.78) (tables 1 and 2,figures 2 and 3). Validity results of the present study are comparable to previous
research using pressure insole devices, where Pearson correlations of 0.84–0.96 (Stöggl andMartiner 2017) and
0.99 (Seiberl et al 2018) have been reported. However, within the current studyGCTwas shorter compared to
these previous studies, but was similar to research examining running performance (deRuiter et al 2014).Minor
differences were demonstrated between theDANUand reference systems regardingGCT and swing time.
Specifically, theDANU sports system slightly underestimatedGCT and over-estimated swing time compared to
a gold-standard reference, these differences becamemore apparent at faster speeds (i.e. 12 and 14 km hr−1),
especially forGCT. Previous research has shown similar degradation in accuracy ofGCTmeasurement with
respect to speed (Falbriard et al 2018, Young et al 2022), highlighting similar limitations in underlying algorithms
used across wearable devices. Calculation ofGCT ismore challenging than other gait outcomes, as it requires
more gait event information, such as timings of heel strike and toe off, as well as the orientation and trajectory of
the foot (Schuna et al 2013). This is highlighted by the excellent accuracy (ICC(2, 1)>0.90) in stride time, which
indicates subtle algorithmdifferences even between outcomemeasures of the same system (Donath et al 2016).
TheDANU sports system calculates temporal gait outcomes through the use of capacitive sensors embedded
within a sock form factor, with event detection froma foot-shoe interaction, whereas the laboratory reference
system examines a foot-floor interaction. The subtle difference in foot impact event detection betweenDANU
and reference systemsmay impact event detection accuracy or timing comparison. Similarly, differences in
agreement between thewearable and reference systemsmay be attributed to extraneous noise encountered at
higher impact speeds thatmay be difficult tofilter leadingmisidentification of gait events within underlying
algorithms (Young et al 2022).

The test re-test reliability results indicatedmoderate to excellent agreement for running gait outcomes across
the two sessions. Specifically,moderate reliability (ICC(2, 1) 0.67–0.69)was demonstrated for overground
running trials, but therewas excellent treadmill reliability during treadmill running trials (ICC(2, 1) 0.96–0.99),
whichwas similar to ourwalking results andwas likely affected by the same issues. The reliability results obtained
here are comparable to previous research. For example, research examining theMyotest found test-retest
reliability forGCT to be poor tomoderate at different running speeds (Gouttebarge et al 2015). In contrast to the
present study, GCT reliability decreased at slower speeds and lowerGCTswere recordedwhichmay relate to
testing on an outdoor athletic track, using verbal feedback speeds (deRuiter et al 2014, Gouttebarge et al 2015),
rather than our indoor overground and treadmill laboratory assessment.

4.3. Limitations and future directions
Several limitations of the present research and future directions should be highlighted. Firstly, the sample
consisted of healthy recreational runners, whichmay not adequately represent all cohorts of potential interest,
such as professional athletes or clinical populations. It is necessary for future studies to evaluate the analytical
and clinical validity of theDANU systemwithin specific cohorts of interest to ensure accuratemeasurement of
gait outcomes. Additionally, future studies should determinewhether theDANUderived gaitmetrics are
clinicallymeaningful outcomes through comparison to healthmetrics (e.g. quality of life, fatigue) orwithin
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different sub-populations (e.g. athlete performance level or disease) (Goldsack et al 2020). Furthermore,
examination of the usability of theDANU sports system is requiredwithin specific populations to ensure
generalizability.

Secondly, validity testingwas conductedwithin a laboratory environment using force plates and a treadmill
were used duringwalking and running, whichmay not entirely represent gait of prolonged overgroundwalking
and running in natural environments. Previous research has demonstrated that significant speed by surface
interactions exist for the temporal outcomes (Hong et al 2012,Hollis et al 2021). Futurework is needed to
validate theDANU sports system inmore ecologically valid settings (i.e. real-world, community, home
environments), as an advantage of wearable devices is the portability and potential to use during real-world
prolonged tasks (Benson et al 2018,Meyer et al 2021).

Lastly, data processing of the treadmill trials was conducted as an average over the 60 s trials, whereas the
absolute difference of each individual step is reported for overground trials due to the nature of the intermittent
overground protocol. Algorithms for gait analysis performbest when processing data from continuous trials,
whichmay bemore representative of real-worldwalking or running than intermittent trials (Ao et al 2018,
Seiberl et al 2018,William et al 2021, Straczkiewicz et al 2023). However, futurework is needed to compare
continuous and intermittent gait outcomes collected in different populations in order to determine the impact
on underlyingDANUproprietary gait algorithms.

5. Conclusions

This study examined the analytical validity and test re-test reliability of a commercial wearable technology, the
DANU sports system, formeasurement of walking and running gait in healthy adults. TheDANU systemhad
good to excellent agreementwith 3Dmotion capture in quantifying ground contact time, swing time and stride
time during overground and treadmill walking and running at various speeds. Furthermore, theDANU system
gait outcomes hadmoderate to excellent reproducibility across two different sessions in healthy adults. Future
research is needed to establish the clinical validity and usability of theDANUSport Systemwearable technology
tomeasure gait in various specific populations before routine deployment within performance or clinical
settings.
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